Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Markus R. Wenk is active.

Publication


Featured researches published by Markus R. Wenk.


Nature Reviews Drug Discovery | 2005

The emerging field of lipidomics.

Markus R. Wenk

Key PointsLipids are important small-molecule metabolites that have roles in a wide variety of physiological processes.Deregulation of lipid metabolism leads to onset of pathology, including many forms of cancer, diabetes and neurodegenerative diseases.Genetics, cell biology and biochemistry have fundamentally advanced our understanding of the biology of lipids in recent years.Novel methodologies for the biochemical analysis of lipids and their effectors will substantially further the field of lipid research, in particular at systems-level scale (lipidomics) approaches.These technologies are valuable tools at various stages of the drug development process, most importantly in target discovery and biomarker development.One of the major advantages of biochemical lipidomics, which aims at measuring lipid metabolites and their effectors, is that it might directly lead to the identification pathways of lipid action or lipid metabolism.AbstractThe crucial role of lipids in cell, tissue and organ physiology is demonstrated by a large number of genetic studies and by many human diseases that involve the disruption of lipid metabolic enzymes and pathways. Examples of such diseases include cancer, diabetes, as well as neurodegenerative and infectious diseases. So far, the explosion of information in the fields of genomics and proteomics has not been matched by a corresponding advancement of knowledge in the field of lipids, which is largely due to the complexity of lipids and the lack of powerful tools for their analysis. Novel analytical approaches — in particular, liquid chromatography and mass spectrometry — for systems-level analysis of lipids and their interacting partners (lipidomics) now make this field a promising area of biomedical research, with a variety of applications in drug and biomarker development.The crucial role of lipids in cell, tissue and organ physiology is demonstrated by a large number of genetic studies and by many human diseases that involve the disruption of lipid metabolic enzymes and pathways. Examples of such diseases include cancer, diabetes, as well as neurodegenerative and infectious diseases. So far, the explosion of information in the fields of genomics and proteomics has not been matched by a corresponding advancement of knowledge in the field of lipids, which is largely due to the complexity of lipids and the lack of powerful tools for their analysis. Novel analytical approaches — in particular, liquid chromatography and mass spectrometry — for systems-level analysis of lipids and their interacting partners (lipidomics) now make this field a promising area of biomedical research, with a variety of applications in drug and biomarker development.


Cell | 1999

Essential Role of Phosphoinositide Metabolism in Synaptic Vesicle Recycling

Ottavio Cremona; Gilbert Di Paolo; Markus R. Wenk; Anita Lüthi; Warren T. Kim; Kohji Takei; Laurie Daniell; Yasuo Nemoto; Stephen B. Shears; Richard A. Flavell; David A. McCormick; Pietro De Camilli

Growing evidence suggests that phosphoinositides play an important role in membrane traffic. A polyphosphoinositide phosphatase, synaptojanin 1, was identified as a major presynaptic protein associated with endocytic coated intermediates. We report here that synaptojanin 1-deficient mice exhibit neurological defects and die shortly after birth. In neurons of mutant animals, PI(4,5)P2 levels are increased, and clathrin-coated vesicles accumulate in the cytomatrix-rich area that surrounds the synaptic vesicle cluster in nerve endings. In cell-free assays, reduced phosphoinositide phosphatase activity correlated with increased association of clathrin coats with liposomes. Intracellular recording in hippocampal slices revealed enhanced synaptic depression during prolonged high-frequency stimulation followed by delayed recovery. These results provide genetic evidence for a crucial role of phosphoinositide metabolism in synaptic vesicle recycling.


Journal of Biological Chemistry | 2010

Dual Role of 3-Methyladenine in Modulation of Autophagy via Different Temporal Patterns of Inhibition on Class I and III Phosphoinositide 3-Kinase

You-Tong Wu; Hui-Ling Tan; Guanghou Shui; Chantal Bauvy; Qing Huang; Markus R. Wenk; Choon Nam Ong; Patrice Codogno; Han-Ming Shen

A group of phosphoinositide 3-kinase (PI3K) inhibitors, such as 3-methyladenine (3-MA) and wortmannin, have been widely used as autophagy inhibitors based on their inhibitory effect on class III PI3K activity, which is known to be essential for induction of autophagy. In this study, we systematically examined and compared the effects of these two inhibitors on autophagy under both nutrient-rich and deprivation conditions. To our surprise, 3-MA is found to promote autophagy flux when treated under nutrient-rich conditions with a prolonged period of treatment, whereas it is still capable of suppressing starvation-induced autophagy. We first observed that there are marked increases of the autophagic markers in cells treated with 3-MA in full medium for a prolonged period of time (up to 9 h). Second, we provide convincing evidence that the increase of autophagic markers is the result of enhanced autophagic flux, not due to suppression of maturation of autophagosomes or lysosomal function. More importantly, we found that the autophagy promotion activity of 3-MA is due to its differential temporal effects on class I and class III PI3K; 3-MA blocks class I PI3K persistently, whereas its suppressive effect on class III PI3K is transient. Because 3-MA has been widely used as an autophagy inhibitor in the literature, understanding the dual role of 3-MA in autophagy thus suggests that caution should be exercised in the application of 3-MA in autophagy study.


Journal of Clinical Investigation | 2011

Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid–induced ceramide biosynthesis in mice

William L. Holland; Benjamin T. Bikman; Liping Wang; Guan Yuguang; Katherine M. Sargent; Sarada Bulchand; Trina A. Knotts; Guanghou Shui; Deborah J. Clegg; Markus R. Wenk; Michael J. Pagliassotti; Philipp E. Scherer; Scott A. Summers

Obesity is associated with an enhanced inflammatory response that exacerbates insulin resistance and contributes to diabetes, atherosclerosis, and cardiovascular disease. One mechanism accounting for the increased inflammation associated with obesity is activation of the innate immune signaling pathway triggered by TLR4 recognition of saturated fatty acids, an event that is essential for lipid-induced insulin resistance. Using in vitro and in vivo systems to model lipid induction of TLR4-dependent inflammatory events in rodents, we show here that TLR4 is an upstream signaling component required for saturated fatty acid-induced ceramide biosynthesis. This increase in ceramide production was associated with the upregulation of genes driving ceramide biosynthesis, an event dependent of the activity of the proinflammatory kinase IKKβ. Importantly, increased ceramide production was not required for TLR4-dependent induction of inflammatory cytokines, but it was essential for TLR4-dependent insulin resistance. These findings suggest that sphingolipids such as ceramide might be key components of the signaling networks that link lipid-induced inflammatory pathways to the antagonism of insulin action that contributes to diabetes.


Nature | 2002

Recruitment and regulation of phosphatidylinositol phosphate kinase type 1 gamma by the FERM domain of talin.

Gilbert Di Paolo; Lorenzo Pellegrini; Kresimir Letinic; Gianluca Cestra; Roberto Zoncu; Sergei Voronov; Sunghoe Chang; Jun Guo; Markus R. Wenk; Pietro De Camilli

Membrane phosphoinositides control a variety of cellular processes through the recruitment and/or regulation of cytosolic proteins. One mechanism ensuring spatial specificity in phosphoinositide signalling is the targeting of enzymes that mediate their metabolism to specific subcellular sites. Phosphatidylinositol phosphate kinase type 1γ (PtdInsPKIγ) is a phosphatidylinositol-4-phosphate 5-kinase that is expressed at high levels in brain, and is concentrated at synapses. Here we show that the predominant brain splice variant of PtdInsPKIγ (PtdInsPKIγ-90) binds, by means of a short carboxy-terminal peptide, to the FERM domain of talin, and is strongly activated by this interaction. Talin, a principal component of focal adhesion plaques, is also present at synapses. PtdInsPKIγ-90 is expressed in non-neuronal cells, albeit at much lower levels than in neurons, and is concentrated at focal adhesion plaques, where phosphatidylinositol-4,5-bisphosphate has an important regulatory role. Overexpression of PtdInsPKIγ-90, or expression of its C-terminal domain, disrupts focal adhesion plaques, probably by local disruption of normal phosphoinositide balance. These findings define an interaction that has a regulatory role in cell adhesion and suggest new similarities between molecular interactions underlying synaptic junctions and general mechanisms of cell adhesion.


Nature | 2004

Impaired PtdIns(4,5)P2 synthesis in nerve terminals produces defects in synaptic vesicle trafficking.

Gilbert Di Paolo; Howard S. Moskowitz; Keith Gipson; Markus R. Wenk; Sergey V. Voronov; Masanori Obayashi; Richard A. Flavell; Reiko Maki Fitzsimonds; Timothy A. Ryan; Pietro De Camilli

Phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) has an important function in cell regulation both as a precursor of second messenger molecules and by means of its direct interactions with cytosolic and membrane proteins. Biochemical studies have suggested a role for PtdIns(4,5)P2 in clathrin coat dynamics, and defects in its dephosphorylation at the synapse produce an accumulation of coated endocytic intermediates. However, the involvement of PtdIns(4,5)P2 in synaptic vesicle exocytosis remains unclear. Here, we show that decreased levels of PtdIns(4,5)P2 in the brain and an impairment of its depolarization-dependent synthesis in nerve terminals lead to early postnatal lethality and synaptic defects in mice. These include decreased frequency of miniature currents, enhanced synaptic depression, a smaller readily releasable pool of vesicles, delayed endocytosis and slower recycling kinetics. Our results demonstrate a critical role for PtdIns(4,5)P2 synthesis in the regulation of multiple steps of the synaptic vesicle cycle.


Journal of Cell Biology | 2005

An enzymatic cascade of Rab5 effectors regulates phosphoinositide turnover in the endocytic pathway

Hye-Won Shin; Mitsuko Hayashi; Savvas Christoforidis; Sandra Lacas-Gervais; Sebastian Hoepfner; Markus R. Wenk; Jan Modregger; Sandrine Uttenweiler-Joseph; Matthias Wilm; Arne M. Nystuen; Wayne N. Frankel; Michele Solimena; Pietro De Camilli; Marino Zerial

Generation and turnover of phosphoinositides (PIs) must be coordinated in a spatial- and temporal-restricted manner. The small GTPase Rab5 interacts with two PI 3-kinases, Vps34 and PI3Kβ, suggesting that it regulates the production of 3-PIs at various stages of the early endocytic pathway. Here, we discovered that Rab5 also interacts directly with PI 5- and PI 4-phosphatases and stimulates their activity. Rab5 regulates the production of phosphatidylinositol 3-phosphate (PtdIns[3]P) through a dual mechanism, by directly phosphorylating phosphatidylinositol via Vps34 and by a hierarchical enzymatic cascade of phosphoinositide-3-kinaseβ (PI3Kβ), PI 5-, and PI 4-phosphatases. The functional importance of such an enzymatic pathway is demonstrated by the inhibition of transferrin uptake upon silencing of PI 4-phosphatase and studies in weeble mutant mice, where deficiency of PI 4-phosphatase causes an increase of PtdIns(3,4)P2 and a reduction in PtdIns(3)P. Activation of PI 3-kinase at the plasma membrane is accompanied by the recruitment of Rab5, PI 4-, and PI 5-phosphatases to the cell cortex. Our data provide the first evidence for a dual role of a Rab GTPase in regulating both generation and turnover of PIs via PI kinases and phosphatases to coordinate signaling functions with organelle homeostasis.


Cell | 2010

Lipidomics: new tools and applications.

Markus R. Wenk

Once viewed simply as a reservoir for carbon storage, lipids are no longer cast as bystanders in the drama of biological systems. The emerging field of lipidomics is driven by technology, most notably mass spectrometry, but also by complementary approaches for the detection and characterization of lipids and their biosynthetic enzymes in living cells. The development of these integrated tools promises to greatly advance our understanding of the diverse biological roles of lipids.


Journal of Cell Biology | 2008

Fld1p, a functional homologue of human seipin, regulates the size of lipid droplets in yeast

Weihua Fei; Guanghou Shui; Bruno A. Gaëta; Ximing Du; Lars Kuerschner; Peng Li; Andrew J. Brown; Markus R. Wenk; Robert G. Parton; Hongyuan Yang

Lipid droplets (LDs) are emerging cellular organelles that are of crucial importance in cell biology and human diseases. In this study, we present our screen of ∼4,700 Saccharomyces cerevisiae mutants for abnormalities in the number and morphology of LDs; we identify 17 fld (few LDs) and 116 mld (many LDs) mutants. One of the fld mutants (fld1) is caused by the deletion of YLR404W, a previously uncharacterized open reading frame. Cells lacking FLD1 contain strikingly enlarged (supersized) LDs, and LDs from fld1Δ cells demonstrate significantly enhanced fusion activities both in vivo and in vitro. Interestingly, the expression of human seipin, whose mutant forms are associated with Berardinelli-Seip congenital lipodystrophy and motoneuron disorders, rescues LD-associated defects in fld1Δ cells. Lipid profiling reveals alterations in acyl chain compositions of major phospholipids in fld1Δ cells. These results suggest that an evolutionally conserved function of seipin in phospholipid metabolism and LD formation may be functionally important in human adipogenesis.


Nature | 2014

Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid

Long N. Nguyen; Dongliang Ma; Guanghou Shui; Peiyan Wong; Amaury Cazenave-Gassiot; Xiaodong Zhang; Markus R. Wenk; Eyleen L. K. Goh; David L. Silver

Docosahexaenoic acid (DHA) is an omega-3 fatty acid that is essential for normal brain growth and cognitive function. Consistent with its importance in the brain, DHA is highly enriched in brain phospholipids. Despite being an abundant fatty acid in brain phospholipids, DHA cannot be de novo synthesized in brain and must be imported across the blood–brain barrier, but mechanisms for DHA uptake in brain have remained enigmatic. Here we identify a member of the major facilitator superfamily—Mfsd2a (previously an orphan transporter)—as the major transporter for DHA uptake into brain. Mfsd2a is found to be expressed exclusively in endothelium of the blood–brain barrier of micro-vessels. Lipidomic analysis indicates that Mfsd2a-deficient (Mfsd2a-knockout) mice show markedly reduced levels of DHA in brain accompanied by neuronal cell loss in hippocampus and cerebellum, as well as cognitive deficits and severe anxiety, and microcephaly. Unexpectedly, cell-based studies indicate that Mfsd2a transports DHA in the form of lysophosphatidylcholine (LPC), but not unesterified fatty acid, in a sodium-dependent manner. Notably, Mfsd2a transports common plasma LPCs carrying long-chain fatty acids such LPC oleate and LPC palmitate, but not LPCs with less than a 14-carbon acyl chain. Moreover, we determine that the phosphor-zwitterionic headgroup of LPC is critical for transport. Importantly, Mfsd2a-knockout mice have markedly reduced uptake of labelled LPC DHA, and other LPCs, from plasma into brain, demonstrating that Mfsd2a is required for brain uptake of DHA. Our findings reveal an unexpected essential physiological role of plasma-derived LPCs in brain growth and function.

Collaboration


Dive into the Markus R. Wenk's collaboration.

Top Co-Authors

Avatar

Guanghou Shui

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Amaury Cazenave-Gassiot

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Federico Torta

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Xue Li Guan

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Gilbert Di Paolo

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Aaron Z. Fernandis

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Wei Fun Cheong

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Sin Man Lam

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Louis Tong

National University of Singapore

View shared research outputs
Researchain Logo
Decentralizing Knowledge