Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Markus Rex is active.

Publication


Featured researches published by Markus Rex.


Nature | 1997

Prolonged stratospheric ozone loss in the 1995–96 Arctic winter

Markus Rex; N. R. P. Harris; Ralph Lehmann; Geir O. Braathen; E. Reimer; Alexander Beck; M. P. Chipperfield; Reimond Alfier; Marc Allaart; F. M. O'Connor; H. Dier; V. Dorokhov; H. Fast; Manuel Gil; E. Kyrö; Zenobia Litynska; Ib Steen Mikkelsen; Mike G. Molyneux; Hideaki Nakane; Justus Notholt; Markku Rummukainen; Pierre Viatte; John C. Wenger

It is well established that extensive depletion of ozone, initiated by heterogenous reactions on polar stratospheric clouds (PSCs) can occur in both the Arctic and Antarctic lower stratosphere. Moreover, it has been shown that ozone loss rates in the Arctic region in recent years reached values comparable to those over the Antarctic,. But until now the accumulated ozone losses over the Arctic have been the smaller, mainly because the period of Arctic ozone loss has not—unlike over the Antarctic—persisted well into springtime. Here we report the occurrence—during the unusually cold 1995–96 Arctic winter—of the highest recorded chemical ozone loss over the Arctic region. Two new kinds of behaviour were observed. First, ozone loss at some altitudes was observed long after the last exposure to PSCs. This continued loss appears to be due to a removal of the nitrogen species that slow down chemical ozone depletion. Second, in another altitude range ozone loss rates decreased while PSCs were still present, apparently because of an early transformation of the ozone-destroying chlorine species into less active chlorinenitrate. The balance between these two counteracting mechanisms is probably a fine one, determined by small differences in wintertime stratospheric temperatures. If the apparent cooling trend in the Arctic stratosphere is real, more dramatic ozone losses may occur in the future.


Journal of Geophysical Research | 2010

Multimodel assessment of the upper troposphere and lower stratosphere: Tropics and global trends

Andrew Gettelman; M. I. Hegglin; Say-Jin Son; Jung-Hyun Kim; Masatomo Fujiwara; Thomas Birner; Stefanie Kremser; Markus Rex; Juan A. Añel; Hideharu Akiyoshi; John Austin; Slimane Bekki; P. Braesike; C. Brühl; Neal Butchart; M. P. Chipperfield; Martin Dameris; S. Dhomse; Hella Garny; Steven C. Hardiman; Patrick Jöckel; Douglas E. Kinnison; Jean-Francois Lamarque; E. Mancini; Marion Marchand; M. Michou; Olaf Morgenstern; Steven Pawson; G. Pitari; David A. Plummer

The performance of 18 coupled Chemistry Climate Models (CCMs) in the Tropical Tropopause Layer (TTL) is evaluated using qualitative and quantitative diagnostics. Trends in tropopause quantities in the tropics and the extratropical Upper Troposphere and Lower Stratosphere (UTLS) are analyzed. A quantitative grading methodology for evaluating CCMs is extended to include variability and used to develop four different grades for tropical tropopause temperature and pressure, water vapor and ozone. Four of the 18 models and the multi‐model mean meet quantitative and qualitative standards for reproducing key processes in the TTL. Several diagnostics are performed on a subset of the models analyzing the Tropopause Inversion Layer (TIL), Lagrangian cold point and TTL transit time. Historical decreases in tropical tropopause pressure and decreases in water vapor are simulated, lending confidence to future projections. The models simulate continued decreases in tropopause pressure in the 21st century, along with ∼1K increases per century in cold point tropopause temperature and 0.5–1 ppmv per century increases in water vapor above the tropical tropopause. TTL water vapor increases below the cold point. In two models, these trends are associated with 35% increases in TTL cloud fraction. These changes indicate significant perturbations to TTL processes, specifically to deep convective heating and humidity transport. Ozone in the extratropical lowermost stratosphere has significant and hemispheric asymmetric trends. O3 is projected to increase by nearly 30% due to ozone recovery in the Southern Hemisphere (SH) and due to enhancements in the stratospheric circulation. These UTLS ozone trends may have significant effects in the TTL and the troposphere.


Geophysical Research Letters | 1998

Ozone loss rates in the Arctic stratosphere in the winter 1991/92: Model calculations compared with match results

Gaby Becker; Rolf Müller; Daniel S. McKenna; Markus Rex; Kenneth S. Carslaw

We present box model calculations of ozone loss rates corresponding to the results of the Match experiment 1991/92. The Match technique infers chemical ozone depletion from an analysis of pairs of balloon soundings that measure ozone in the same airparcel at different points of a calculated trajectory. It allows a quantitative comparison with model results because the exposure of the observed air-masses to sunlight is well known. The model significantly underestimates the loss rates inferred for January to mid-February. Extensive sensitivity studies show that the discrepancy between model and Match results cannot be explained by the known uncertainties in the model parameters.


Reviews of Geophysics | 2016

Stratospheric Aerosol--Observations, Processes, and Impact on Climate

Stefanie Kremser; Larry W. Thomason; Marc von Hobe; Markus Hermann; Terry Deshler; Claudia Timmreck; Matthew Toohey; Andrea Stenke; Joshua P. Schwarz; R. Weigel; S. Fueglistaler; Fred Prata; Jean-Paul Vernier; Hans Schlager; John E. Barnes; Juan-Carlos Antuña-Marrero; Duncan Fairlie; Mathias Palm; Emmanuel Mahieu; Justus Notholt; Markus Rex; Christine Bingen; Filip Vanhellemont; John M. C. Plane; Daniel Klocke; Simon A. Carn; Lieven Clarisse; Thomas Trickl; Ryan R. Neely; Alexander D. James

Interest in stratospheric aerosol and its role in climate have increased over the last decade due to the observed increase in stratospheric aerosol since 2000 and the potential for changes in the sulfur cycle induced by climate change. This review provides an overview about the advances in stratospheric aerosol research since the last comprehensive assessment of stratospheric aerosol was published in 2006. A crucial development since 2006 is the substantial improvement in the agreement between in situ and space-based inferences of stratospheric aerosol properties during volcanically quiescent periods. Furthermore, new measurement systems and techniques, both in situ and space based, have been developed for measuring physical aerosol properties with greater accuracy and for characterizing aerosol composition. However, these changes induce challenges to constructing a long-term stratospheric aerosol climatology. Currently, changes in stratospheric aerosol levels less than 20% cannot be confidently quantified. The volcanic signals tend to mask any nonvolcanically driven change, making them difficult to understand. While the role of carbonyl sulfide as a substantial and relatively constant source of stratospheric sulfur has been confirmed by new observations and model simulations, large uncertainties remain with respect to the contribution from anthropogenic sulfur dioxide emissions. New evidence has been provided that stratospheric aerosol can also contain small amounts of nonsulfate matter such as black carbon and organics. Chemistry-climate models have substantially increased in quantity and sophistication. In many models the implementation of stratospheric aerosol processes is coupled to radiation and/or stratospheric chemistry modules to account for relevant feedback processes.


Geophysical Research Letters | 2003

On the unexplained stratospheric ozone losses during cold Arctic Januaries

Markus Rex; R. J. Salawitch; Michelle L. Santee; J. W. Waters; K. W. Hoppel; Richard M. Bevilacqua

Using a combination of data from Match, POAM II, POAM III and MLS we show that the chemical loss rate of Arctic O3 during January of four cold winters (1992, 1995, 1996, and 2000) is consistently faster than can be accounted for by assuming complete activation of reactive chlorine and standard reaction kinetics. However, O3 loss rates measured during late February and early March 1996 are shown to be consistent with observations of ClO. The faster than expected O3 loss rates during January are shown to occur when air parcels are illuminated at high solar zenith angles (SZAs between ~85 and 94°), and to result in cumulative O3 loss of ~0.5 ppmv. The cause of the rapid January O3 loss is unclear, but may be related to a photolytic process at high SZA that is poorly represented by current photochemical models.


Journal of Geophysical Research | 2000

Ozone loss rates in the Arctic stratosphere in the winter 1994/1995: Model simulations underestimate results of the Match analysis

Gaby Becker; Rolf Müller; Daniel S. McKenna; Markus Rex; Kenneth S. Carslaw; H. Oelhaf

We present box model simulations of ozone loss rates in the Arctic lower stratosphere for the winter 1994/1995. The ozone loss was simulated along each of the trajectories of the Match data set for 1994/1995 to conduct a quantitative comparison with the Match results. The simulated ozone loss rates reach their maximum value of ≈ 4 ppb per sunlit hour at the end of January. For this period and for potential temperatures below 475 K the model results are in good agreement with the Match results, but for potential temperatures above 475 K the model underestimates the ozone loss rate by up to a factor of 2. This difference cannot be explained by known uncertainties of the model. Enhanced ozone loss has also been observed in March 1995 for potential temperatures below 475 K. These loss rates are also substantially underestimated by the model, but are within the range of the model uncertainties. In particular, the ozone loss rates simulated for March 1995 strongly depend on the extent of denitrification.


Journal of Geophysical Research | 1999

A test of our understanding of the ozone chemistry in the Arctic polar vortex based on in situ measurements of ClO, BrO, and O3 in the 1994/1995 winter

Thomas Woyke; Rolf Müller; F. Stroh; Daniel S. McKenna; Andreas Engel; J. J. Margitan; Markus Rex; Kenneth S. Carslaw

We present an analysis of in situ measurements of ClO, BrO, O3, and long-lived tracers obtained on a balloon flight in the Arctic polar vortex launched from Kiruna, Sweden, 68°N, on February 3, 1995. Using the method of tracer correlations, we deduce that the air masses sampled at an altitude of 21 km (480 K potential temperature), where a layer of enhanced ClO mixing ratios of up to 1150 parts per trillion by volume was observed, experienced a cumulative chemical ozone loss of 1.0±0.3 ppmv between late November 1994 and early February 1995. This estimate of chemical ozone loss can be confirmed using independent data sets and independent methods. Calculations using a trajectory box model show that the simulations underestimate the cumulative ozone loss by approximately a factor of 2, although observed ClO and BrO mixing ratios are well reproduced by the model. Employing additional simulations of ozone loss rates for idealized conditions, we conclude that the known chlorine and bromine catalytic cycles destroying odd oxygen with the known rate constants and absorption cross sections do not quantitatively account for the early winter ozone losses infered for air masses observed at 21 km.


Journal of Geophysical Research | 2007

Comparison of polar ozone loss rates simulated by one‐dimensional and three‐dimensional models with Match observations in recent Antarctic and Arctic winters

Om P. Tripathi; Sophie Godin-Beekmann; Franck Lefèvre; Andrea Pazmino; Alain Hauchecorne; M. P. Chipperfield; W. Feng; G. A. Millard; Markus Rex; M. Streibel

Simulations of ozone loss rates using a three-dimensional chemical transport model and a box model during recent Antarctic and Arctic winters are compared with experimental loss rates. The study focused on the Antarctic winter 2003, during which the first Antarctic Match campaign was organized, and on Arctic winters 1999/2000, 2002/2003. The maximum ozone loss rates retrieved by the Match technique for the winters and levels studied reached 6 ppbv/sunlit hour and both types of simulations could generally reproduce the observations at 2-sigma error bar level. In some cases, for example, for the Arctic winter 2002/2003 at 475 K level, an excellent agreement within 1-sigma standard deviation level was obtained. An overestimation was also found with the box model simulation at some isentropic levels for the Antarctic winter and the Arctic winter 1999/2000, indicating an overestimation of chlorine activation in the model. Loss rates in the Antarctic show signs of saturation in September, which have to be considered in the comparison. Sensitivity tests were performed with the box model in order to assess the impact of kinetic parameters of the ClO-Cl2O2 catalytic cycle and total bromine content on the ozone loss rate. These tests resulted in a maximum change in ozone loss rates of 1.2 ppbv/sunlit hour, generally in high solar zenith angle conditions. In some cases, a better agreement was achieved with fastest photolysis of Cl2O2 and additional source of total inorganic bromine but at the expense of overestimation of smaller ozone loss rates derived later in the winter.


Polar Research | 2000

Arctic and Antarctic ozone layer observations: chemical and dynamical aspects of variability and long-term changes in the polar stratosphere

Markus Rex; Klaus Dethloff; Dörthe Handorf; Andreas Herber; Ralph Lehmann; Roland Neuber; Justus Notholt; Annette Rinke; A. Weisheimer; Hartwig Gernandt

The altitude dependent variability of ozone in the polar stratosphere is regularly observed by balloon-borne ozonesonde observations at Neumayer Station (70°S) in the Antarctic and at Koldewey Station (79°N)in the Arctic. The reasons for observed seasonal and interannual variability and long-term changes are discussed. Differences between the hemispheres are identified and discussed in light of differing dynamical and chemical conditions. Since the mid- 1980s, rapid chemical ozone loss has been recorded in the lower Antarctic stratosphere during the spring season. Using coordinated ozone soundings in some Arctic winters, similar chemical ozone loss rates have been detected related to periods of low temperatures. The currently observed cooling trend of the stratosphere, potentially caused by the increase of anthropogenic greenhouse gases, may further strengthen chemical ozone removal in the Arctic. However, the role of internal climate oscillations in observed temperature trends is still uncertain. First results of a 10000 year integration of a low order climate model indicate significant internal climate variability. on decadal time scales, that may alter the effect of increasing levels of greenhouse gases in the polar stratosphere.


Journal of Geophysical Research | 2008

Variations of the residual circulation in the Northern Hemispheric winter

Susann Tegtmeier; Kirstin Krüger; Ingo Wohltmann; K. Schoellhammer; Markus Rex

A multiyear time series of the vortex-averaged diabatic descent for 47 Arctic winters from 1957/1958 until 2003/2004 is presented. The climatology of diabatic descent is based on trajectory calculations coupled with diabatic heating rate calculations carried out in the polar lower stratosphere of the Northern Hemisphere winters. We demonstrate the improved performance of the approach based on diabatic heating rates compared to the approach based on vertical winds from meteorological analysis. The time series of the vortex-averaged diabatic descent gives a detailed picture of intensity and altitude dependence of the stratospheric vertical transport processes during the Arctic winter. In addition to the overall vortex-averaged diabatic descent, the spatial structure of the descent is analyzed for two different Arctic winters. We demonstrate for this case study that not only the intensity but also the zonal structure of the diabatic descent depends on the meteorological conditions in the polar vortex. The climatology is characterized by very pronounced interannual variability which is linked to the variability of temperature anomalies and to the variability of Eliassen-Palm (EP)-flux anomalies, wherein strong planetary wave activity leads to strong diabatic descent and vice versa. The correlation between EP-flux and descent shows that tropospheric dynamics have a strong influence on the strength of the polar branch of the residual circulation by means of the atmospheric wave activity.

Collaboration


Dive into the Markus Rex's collaboration.

Top Co-Authors

Avatar

Ingo Wohltmann

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar

Ralph Lehmann

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. Frieler

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar

Michelle L. Santee

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

F. Stroh

Forschungszentrum Jülich

View shared research outputs
Researchain Logo
Decentralizing Knowledge