Markus Sigrist
University of Basel
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Markus Sigrist.
PLOS Biology | 2005
Simon Hippenmeyer; Eline Vrieseling; Markus Sigrist; Thomas Portmann; Celia Laengle; David R. Ladle; Silvia Arber
Two ETS transcription factors of the Pea3 subfamily are induced in subpopulations of dorsal root ganglion (DRG) sensory and spinal motor neurons by target-derived factors. Their expression controls late aspects of neuronal differentiation such as target invasion and branching. Here, we show that the late onset of ETS gene expression is an essential requirement for normal sensory neuron differentiation. We provide genetic evidence in the mouse that precocious ETS expression in DRG sensory neurons perturbs axonal projections, the acquisition of terminal differentiation markers, and their dependence on neurotrophic support. Together, our findings indicate that DRG sensory neurons exhibit a temporal developmental switch that can be revealed by distinct responses to ETS transcription factor signaling at sequential steps of neuronal maturation.
Nature Neuroscience | 2005
Franck Bielle; Amélie Griveau; Nicolas Narboux-Nême; Sébastien Vigneau; Markus Sigrist; Silvia Arber; Marion Wassef; Alessandra Pierani
Cajal-Retzius cells are critical in cortical lamination, but very little is known about their origin and development. The homeodomain transcription factor Dbx1 is expressed in restricted progenitor domains of the developing pallium: the ventral pallium (VP) and the septum. Using genetic tracing and ablation experiments in mice, we show that two subpopulations of Reelin+ Cajal-Retzius cells are generated from Dbx1-expressing progenitors. VP- and septum-derived Reelin+ neurons differ in their onset of appearance, migration routes, destination and expression of molecular markers. Together with reported data supporting the generation of Reelin+ cells in the cortical hem, our results show that Cajal-Retzius cells are generated at least at three focal sites at the borders of the developing pallium and are redistributed by tangential migration. Our data also strongly suggest that distinct Cajal-Retzius subtypes exist and that their presence in different territories of the developing cortex might contribute to region-specific properties.
Neuron | 2002
Jean Livet; Markus Sigrist; Simon Stroebel; Vincenzo De Paola; Stephen R. Price; Christopher E. Henderson; Thomas M. Jessell; Silvia Arber
The projection of developing axons to their targets is a crucial step in the assembly of neuronal circuits. In the spinal cord, the differentiation of specific motor neuron pools is associated with the expression of ETS class transcription factors, notably PEA3 and ER81. Their initial expression coincides with the arrival of motor axons in the vicinity of muscle targets and depends on limb-derived signals. We show that in Pea3 mutant mice, the axons of specific motor neuron pools fail to branch normally within their target muscles, and the cell bodies of these motor neurons are mispositioned within the spinal cord. Thus, the induction of an intrinsic program of ETS gene expression by peripheral signals is required to coordinate the central position and terminal arborization of specific sets of spinal motor neurons.
Neuron | 2006
Ina Kramer; Markus Sigrist; Joriene C. de Nooij; Ichiro Taniuchi; Thomas M. Jessell; Silvia Arber
Subpopulations of sensory neurons in the dorsal root ganglion (DRG) can be characterized on the basis of sensory modalities that convey distinct peripheral stimuli, but the molecular mechanisms that underlie sensory neuronal diversification remain unclear. Here, we have used genetic manipulations in the mouse embryo to examine how Runx transcription factor signaling controls the acquisition of distinct DRG neuronal subtype identities. Runx3 acts to diversify an Ngn1-independent neuronal cohort by promoting the differentiation of proprioceptive sensory neurons through erosion of TrkB expression in prospective TrkC+ sensory neurons. In contrast, Runx1 controls neuronal diversification within Ngn1-dependent TrkA+ neurons by repression of neuropeptide CGRP expression and controlling the fine pattern of laminar termination in the dorsal spinal cord. Together, our findings suggest that Runx transcription factor signaling plays a key role in sensory neuron diversification.
The Journal of Neuroscience | 2004
Rishard Salie; Markus Sigrist; Silvia Arber
The establishment of topographic projections in the developing visual system depends on the spatially and temporally controlled expression of axon guidance molecules. In the developing chick tectum, the graded expression of the repulsive guidance molecule (RGM) has been proposed to be involved in controlling the topography of the retinal ganglion cell (RGC) axon termination zones along the anteroposterior axis of the tectum. We now show that there are three mouse proteins homologous to chick RGM displaying similar proteolytic processing but exhibiting differential cell-surface targeting by glycosyl phosphatidylinositol anchor addition. Two members of this gene family (mRGMa and mRGMb) are expressed in complementary patterns in the nervous system, and mRGMa is expressed prominently in the superior colliculus at the time of anteroposterior targeting of RGC axons. The third member of the family (mRGMc) is expressed almost exclusively in skeletal muscles. Functional studies in the mouse reveal a role for mRGMa in controlling cephalic neural tube closure, thus defining an unexpected role for mRGMa in early embryonic development. In contrast, mRGMa mutant mice did not exhibit defects in anteroposterior targeting of RGC axons to their stereotypic termination zones in the superior colliculus.
Nature | 2009
Eline Pecho-Vrieseling; Markus Sigrist; Yutaka Yoshida; Thomas M. Jessell; Silvia Arber
Spinal reflexes are mediated by synaptic connections between sensory afferents and motor neurons. The organization of these circuits shows several levels of specificity. Only certain classes of proprioceptive sensory neurons make direct, monosynaptic connections with motor neurons. Those that do are bound by rules of motor pool specificity: they form strong connections with motor neurons supplying the same muscle, but avoid motor pools supplying antagonistic muscles. This pattern of connectivity is initially accurate and is maintained in the absence of activity, implying that wiring specificity relies on the matching of recognition molecules on the surface of sensory and motor neurons. However, determinants of fine synaptic specificity here, as in most regions of the central nervous system, have yet to be defined. To address the origins of synaptic specificity in these reflex circuits we have used molecular genetic methods to manipulate recognition proteins expressed by subsets of sensory and motor neurons. We show here that a recognition system involving expression of the class 3 semaphorin Sema3e by selected motor neuron pools, and its high-affinity receptor plexin D1 (Plxnd1) by proprioceptive sensory neurons, is a critical determinant of synaptic specificity in sensory–motor circuits in mice. Changing the profile of Sema3e–Plxnd1 signalling in sensory or motor neurons results in functional and anatomical rewiring of monosynaptic connections, but does not alter motor pool specificity. Our findings indicate that patterns of monosynaptic connectivity in this prototypic central nervous system circuit are constructed through a recognition program based on repellent signalling.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Andreas Friese; Julia A. Kaltschmidt; David R. Ladle; Markus Sigrist; Thomas M. Jessell; Silvia Arber
Spinal motor neurons are specified to innervate different muscle targets through combinatorial programs of transcription factor expression. Whether transcriptional programs also establish finer aspects of motor neuron subtype identity, notably the prominent functional distinction between alpha and gamma motor neurons, remains unclear. In this study, we identify DNA binding proteins with complementary expression profiles in alpha and gamma motor neurons, providing evidence for molecular distinctions in these two motor neuron subtypes. The transcription factor Err3 is expressed at high levels in gamma but not alpha motor neurons, whereas the neuronal DNA binding protein NeuN marks alpha but not gamma motor neurons. Signals from muscle spindles are needed to support the differentiation of Err3on/NeuNoff presumptive gamma motor neurons, whereas direct proprioceptive sensory input to a motor neuron pool is apparently dispensable. Together, these findings provide evidence that transcriptional programs define functionally distinct motor neuron subpopulations, even within anatomically defined motor pools.
Cell | 2014
Chiara Pivetta; Maria Soledad Esposito; Markus Sigrist; Silvia Arber
Accurate motor-task execution relies on continuous comparison of planned and performed actions. Motor-output pathways establish internal circuit collaterals for this purpose. Here we focus on motor collateral organization between spinal cord and upstream neurons in the brainstem. We used a newly developed mouse genetic tool intersectionally with viruses to uncover the connectivity rules of these ascending pathways by capturing the transient expression of neuronal subpopulation determinants. We reveal a widespread and diverse network of spinal dual-axon neurons, with coincident input to forelimb motor neurons and the lateral reticular nucleus (LRN) in the brainstem. Spinal information to the LRN is not segregated by motor pool or neurotransmitter identity. Instead, it is organized according to the developmental domain origin of the progenitor cells. Thus, excerpts of most spinal information destined for action are relayed to supraspinal centers through exquisitely organized ascending connectivity modules, enabling precise communication between command and execution centers of movement.
Cell | 2015
Emanuela Basaldella; Aya Takeoka; Markus Sigrist; Silvia Arber
The ability to continuously adjust posture and balance is necessary for reliable motor behavior. Vestibular and proprioceptive systems influence postural adjustments during movement by signaling functionally complementary sensory information. Using viral tracing and mouse genetics, we reveal two patterns of synaptic specificity between brainstem vestibular neurons and spinal motor neurons, established through distinct mechanisms. First, vestibular input targets preferentially extensor over flexor motor pools, a pattern established by developmental refinement in part controlled by vestibular signaling. Second, vestibular input targets slow-twitch over fast motor neuron subtypes within extensor pools, while proprioceptors exhibit inversely correlated connectivity profiles. Genetic manipulations affecting the functionality of proprioceptive feedback circuits lead to adjustments in vestibular input to motor neuron subtypes counterbalancing the imposed changes, without changing the sparse vestibular input to flexor pools. Thus, two sensory signaling systems interact to establish complementary synaptic input patterns to the final site of motor output processing.
Molecular and Cellular Neuroscience | 2006
Olivier Raineteau; Sylvain Hugel; Ilknur Ozen; Lotty Rietschin; Markus Sigrist; Silvia Arber; Beat H. Gähwiler
The dentate gyrus continues to produce new granule cells throughout life. Understanding the mechanisms underlying their integration into the pre-existing hippocampal circuitry is of crucial importance. In the present study, we developed an approach allowing visual tracking of newborn granule cells in hippocampal organotypic slices. By crossing neurogenin 2 (Ngn2-CreER) with Cre-reporter mice expressing YFP or GFP reporter genes, it was possible to observe living cells after treating slice cultures with 4-hydroxytamoxifen to induce Cre recombinase activation. Colocalization of GFP with the mitotic marker BrdU demonstrated that the GFP-expressing granule cells were born in vitro. They mature and integrate normally into the hippocampal circuitry, as shown using morphological and electrophysiological techniques. This ex vivo approach therefore offers a highly accessible model to study the effects of long-term treatments on maturation and integration of newborn granule cells.