Markus Soldemo
Royal Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Markus Soldemo.
Journal of the American Chemical Society | 2013
Ashleigh E. Baber; Fang Xu; Filip Dvorák; Kumudu Mudiyanselage; Markus Soldemo; Jonas Weissenrieder; Sanjaya D. Senanayake; Jerzy T. Sadowski; José A. Rodriguez; Vladimír Matolín; Michael G. White; Dario Stacchiola
Active catalytic sites have traditionally been analyzed based on static representations of surface structures and characterization of materials before or after reactions. We show here by a combination of in situ microscopy and spectroscopy techniques that, in the presence of reactants, an oxide catalysts chemical state and morphology are dynamically modified. The reduction of Cu2O films is studied under ambient pressures (AP) of CO. The use of complementary techniques allows us to identify intermediate surface oxide phases and determine how reaction fronts propagate across the surface by massive mass transfer of Cu atoms released during the reduction of the oxide phase in the presence of CO. High resolution in situ imaging by AP scanning tunneling microscopy (AP-STM) shows that the reduction of the oxide films is initiated at defects both on step edges and the center of oxide terraces.
Angewandte Chemie | 2014
Ashleigh E. Baber; Xiaofang Yang; Hyun You Kim; Kumudu Mudiyanselage; Markus Soldemo; Jonas Weissenrieder; Sanjaya D. Senanayake; Abdullah Al-Mahboob; Jerzy T. Sadowski; Jaime Evans; José A. Rodriguez; Ping Liu; F.M. Hoffmann; Jingguang G. Chen; Dario Stacchiola
The oxidation of CO is the archetypal heterogeneous catalytic reaction and plays a central role in the advancement of fundamental studies, the control of automobile emissions, and industrial oxidation reactions. Copper-based catalysts were the first catalysts that were reported to enable the oxidation of CO at room temperature, but a lack of stability at the elevated reaction temperatures that are used in automobile catalytic converters, in particular the loss of the most reactive Cu(+) cations, leads to their deactivation. Using a combined experimental and theoretical approach, it is shown how the incorporation of titanium cations in a Cu2O film leads to the formation of a stable mixed-metal oxide with a Cu(+) terminated surface that is highly active for CO oxidation.
Chemcatchem | 2014
Wei An; Ashleigh E. Baber; Fang Xu; Markus Soldemo; Jonas Weissenrieder; Dario Stacchiola; Ping Liu
The reducibility of metal oxides is of great importance to their catalytic behavior. Herein, we combined ambient‐pressure scanning tunneling microscopy (AP–STM), X‐ray photoemission spectroscopy (AP–XPS), and DFT calculations to study the CO titration of CuxO thin films supported on Cu(1 1 1) (CuxO/Cu(1 1 1)) aiming to gain a better understanding of the roles that the Cu(1 1 1) support and surface defects play in tuning catalytic performances. Different conformations have been observed during the reduction, namely, the 44 structure and a recently identified (5–7–7–5) Stone–Wales defects (5–7 structure). The DFT calculations revealed that the Cu(1 1 1) support is important to the reducibility of supported CuxO thin films. Compared with the case for the Cu2O(1 1 1) bulk surface, at the initial stage CO titration is less favorable on both the 44 and 5–7 structures. The strong CuxO↔Cu interaction accompanied with the charge transfer from Cu to CuxO is able to stabilize the oxide film and hinder the removal of O. However, with the formation of more oxygen vacancies, the binding between CuxO and Cu(1 1 1) is weakened and the oxide film is destabilized, and Cu2O(1 1 1) is likely to become the most stable system under the reaction conditions. In addition, the surface defects also play an essential role. With the proceeding of the CO titration reaction, the 5–7 structure displays the highest activity among all three systems. Stone–Wales defects on the surface of the 5–7 structure exhibit a large difference from the 44 structure and Cu2O(1 1 1) in CO binding energy, stability of lattice oxygen, and, therefore, the reduction activity. The DFT results agree well with the experimental measurements, demonstrating that by adopting the unique conformation, the 5–7 structure is the active phase of CuxO, which is able to facilitate the redox reaction and the Cu2O/Cu(1 1 1)↔Cu transition.
Optics Express | 2012
Oscar Gustafsson; Amir Karim; Jesper Berggren; Qin Wang; Carl Reuterskiöld-Hedlund; Christopher Ernerheim-Jokumsen; Markus Soldemo; Jonas Weissenrieder; Sirpa Persson; Susanne Almqvist; Ulf Ekenberg; Bertrand Noharet; Carl Asplund; Mats Göthelid; Jan Y. Andersson; Mattias Hammar
InSb-based quantum dots grown by metal-organic vapor-phase epitaxy (MOVPE) on InAs substrates are studied for use as the active material in interband photon detectors. Long-wavelength infrared (LWIR) photoluminescence is demonstrated with peak emission at 8.5 µm and photoresponse, interpreted to originate from type-II interband transitions in a p-i-n photodiode, was measured up to 6 µm, both at 80 K. The possibilities and benefits of operation in the LWIR range (8-12 µm) are discussed and the results suggest that InSb-based quantum dot structures can be suitable candidates for photon detection in the LWIR regime.
Physical Chemistry Chemical Physics | 2016
Joakim Halldin Stenlid; Markus Soldemo; Adam Johannes Johansson; Christofer Leygraf; Mats Göthelid; Jonas Weissenrieder; Tore Brinck
The water-cuprite interface plays an important role in dictating surface related properties. This not only applies to the oxide, but also to metallic copper, which is covered by an oxide film under typical operational conditions. In order to extend the currently scarce knowledge of the details of the water-oxide interplay, water interactions and reactions on a common Cu2O(100):Cu surface have been studied using high-resolution photoelectron spectroscopy (PES) as well as Hubbard U and dispersion corrected density functional theory (PBE-D3+U) calculations up to a bilayer water coverage. The PBE-D3+U results are compared with PBE, PBE-D3 and hybrid HSE06-D3 calculation results. Both computational and experimental results support a thermodynamically favored, and H2O coverage independent, surface OH coverage of 0.25-0.5 ML, which is larger than the previously reported value. The computations indicate that the results are consistent also for ambient temperatures under wet/humid and oxygen lean conditions. In addition, both DFT and PES results indicate that the initial (3,0;1,1) surface reconstruction is lifted upon water adsorption to form an unreconstructed (1 × 1) Cu2O(100) structure.
Journal of Chemical Physics | 2017
Zahra Besharat; Joakim Halldin Stenlid; Markus Soldemo; Kess Marks; Anneli Önsten; Magnus Johnson; Henrik Öström; Jonas Weissenrieder; Tore Brinck; Mats Göthelid
Adsorption and desorption of methanol on the (111) and (100) surfaces of Cu2O have been studied using high-resolution photoelectron spectroscopy in the temperature range 120-620 K, in combination with density functional theory calculations and sum frequency generation spectroscopy. The bare (100) surface exhibits a (3,0; 1,1) reconstruction but restructures during the adsorption process into a Cu-dimer geometry stabilized by methoxy and hydrogen binding in Cu-bridge sites. During the restructuring process, oxygen atoms from the bulk that can host hydrogen appear on the surface. Heating transforms methoxy to formaldehyde, but further dehydrogenation is limited by the stability of the surface and the limited access to surface oxygen. The (√3 × √3)R30°-reconstructed (111) surface is based on ordered surface oxygen and copper ions and vacancies, which offers a palette of adsorption and reaction sites. Already at 140 K, a mixed layer of methoxy, formaldehyde, and CHxOy is formed. Heating to room temperature leaves OCH and CHx. Thus both CH-bond breaking and CO-scission are active on this surface at low temperature. The higher ability to dehydrogenate methanol on (111) compared to (100) is explained by the multitude of adsorption sites and, in particular, the availability of surface oxygen.
Applied Physics Letters | 2015
Thomas Zabel; C. Reuterskiöld Hedlund; Oscar Gustafsson; Amir Karim; Jesper Berggren; Qin Wang; C. Ernerheim-Jokumsen; Markus Soldemo; Jonas Weissenrieder; M. Götelid; Mattias Hammar
We report on the epitaxial formation of type II In0.5Ga0.5Sb/InAs and InSb/InAs quantum dot ensembles using metal organic vapor phase epitaxy. Employing scanning tunneling spectroscopy, we determine spatial quantum dot dimensions smaller than the de Broglie wavelength of InGaSb, which strongly indicates a three dimensional hole confinement. Photoluminescence spectroscopy at low temperatures yields an enhanced radiative recombination in the mid-infrared regime at energies of 170–200 meV. This luminescence displays a strong excitation power dependence with a blueshift indicating a filling of excited quantum dot hole states. Furthermore, a rate equation model is used to extract the Auger recombination coefficient from the power dependent intensity at 77 K yielding values of 1.35 × 10−28 cm6/s for In0.5Ga0.5Sb/InAs quantum dots and 1.47 × 10−27 cm6/s for InSb/InAs quantum dots, which is about one order of magnitude lower as previously obtained values for InGaSb superlattices.
Applied Surface Science | 2015
Jonas Evertsson; Florian Bertram; Fan Zhang; Lisa Rullik; Lindsay R. Merte; Mikhail Shipilin; Markus Soldemo; Sareh Ahmadi; Nikolay A. Vinogradov; Francesco Carlà; Jonas Weissenrieder; Mats Göthelid; Jinshan Pan; Anders Mikkelsen; Johan Nilsson; Edvin Lundgren
Journal of Physical Chemistry C | 2014
Fang Xu; Kumudu Mudiyanselage; Ashleigh E. Baber; Markus Soldemo; Jonas Weissenrieder; Michael G. White; Dario Stacchiola
Catalysis Letters | 2013
Yulia Martynova; Markus Soldemo; Jonas Weissenrieder; S. Sachert; S. Polzin; W. Widdra; Shamil K. Shaikhutdinov; Hans-Joachim Freund