Markus Stommel
Technical University of Dortmund
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Markus Stommel.
2015 IEEE Scientific Visualization Conference (SciVis) | 2015
Valentin Zobel; Markus Stommel; Gerik Scheuermann
Virtual testing is an integral part of modern product development in mechanical engineering. Numerical structure simulations allow the computation of local stresses which are given as tensor fields. For homogeneous materials, the tensor information is usually reduced to a scalar field like the von Mises stress. A material-dependent threshold defines the material failure answering the key question of engineers. This leads to a rather simple feature-based visualisation. For composite materials like short fiber reinforced polymers, the situation is much more complex. The material property is determined by the fiber distribution at every position, often described as fiber orientation tensor field. Essentially, the materials ability to cope with stress becomes anisotropic and inhomogeneous. We show how to combine the stress field and the fiber orientation field in such cases, leading to a feature-based visualization of tensor fields for composite materials. The resulting features inform the engineer about potential improvements in the product development.
IOP Conference Series: Materials Science and Engineering | 2013
Johannes Zimmer; Markus Stommel
Finite-Element (FE) simulations are a valuable tool to support the analysis and optimization of production processes. In order to achieve realistic simulation results, a consistent simulation set-up followed by an evaluation through experiments is crucial. Stretch Blow Molding (SBM) is a commonly applied forming method to produce thin walled bottles. Polyethylene terephthalate (PET) preforms are biaxially stretched into a closed cavity to form a bottle. In this process the thermo-mechanical material behavior during forming greatly influences the performance of the end product and consequently plays a key role for a reliable process simulation. To ensure a realistic material representation in the simulation model, an adequate material model is calibrated with stress-strain curves from biaxial tests. Thin PET-sheets are stretched under defined temperatures and strain rates. These representative experiments include process simplifications regarding geometry, heating and deformation parameters. Therefore, an evaluation step subsequent to the simulation set-up is inevitable. This paper presents a method for extracting temperature dependent stress-strain-curves from experiments close to the production process which enables the crucial evaluation of a process simulation. In the SBM process, the wall thickness distribution of the bottle refers to the preform deformation over time but does not fully define the thermo-mechanical material behavior. In the presented method, PET-preforms receive thermal treatment with Infrared (IR)-heaters from an SBM-machine and are subsequently inflated into free air (free-blow-trial). An IR-camera is used to obtain the temperature distribution on the preform immediately before blowing. Two high speed cameras are synchronized with a pressure sensor to consequently calculate reliable stress-strain curves at any point on the preform surface. These data is finally compared to results from FE-simulations of the free blow trials.
Polymers | 2017
Anna Sambale; Marc Schöneich; Markus Stommel
The interphase in short fiber thermoplastic composites is defined as a three-dimensional, several hundred nanometers-wide boundary region at the interface of fibers and the polymer matrix, exhibiting altered mechanical properties. This region is of key importance in the context of fiber-matrix adhesion and the associated mechanical strength of the composite material. An interphase formation is caused by morphological, as well as thermomechanical processes during cooling of the plastic melt close to the glass fibers. In this study, significant injection molding processing parameters are varied in order to investigate the influence on the formation of an interphase and the resulting mechanical properties of the composite. The geometry of the interphase is determined using nano-tribological techniques. In addition, the influence of the glass fiber sizing on the geometry of the interphase is examined. Tensile tests are used in order to determine the resulting mechanical properties of the produced short fiber composites. It is shown that the interphase width depends on the processing conditions and can be linked to the mechanical properties of the short fiber composite.
Key Engineering Materials | 2013
Johannes Zimmer; Christian Detrois; Markus Stommel
In the Stretch blow moulding (SBM) process, polyethylene terephthalate (PET)-preforms are biaxially deformed to produce thin walled bottles. Finite-Element (FE)-Simulations are an important tool to optimise this process in terms of material usage and product performance. Thereby, the implementation of the thermo-mechanical material behaviour of PET plays an important role to achieve realistic simulation results. A common approach for this purpose is to calibrate a material model with stress-strain curves from biaxial stretching experiments. Thin PET-sheets are stretched under defined temperatures and strain rates. However, these experiments include process simplifications concerning geometry, heating and deformation parameters. This paper presents a method for extracting temperature dependent stress-strain-curves from experiments close to the production process. PET-Preforms receive thermal treatment with Infrared (IR)-heaters from an SBM-machine and are subsequently inflated in free air (free blow trial). A high-speed-IR-camera is used to image the axial and radial temperature distribution on the preform immediately before blowing. The deformation process is recorded via 3d-high-speed-cameras with a frame rate of 2000/s. The cameras are synchronised with a pressure sensor to consequently calculate reliable stress-strain curves at any point on the preform. In addition FE-simulations of the free blow trials are conducted using a material model calibrated with the simplified stretching experiments of thin PET sheets. Resulting stress-strain-curves from simulations and free-blow-trials are finally compared to evaluate the quality of the material model as well as the underlying testing procedure.
Key Engineering Materials | 2015
Johannes Zimmer; Daniel Klein; Markus Stommel
The packaging of liquid products is conventionally realized by using two production stages, which are the stretch blow molding and the filling. In the stretch blow molding process, hot polyethylene terephthalate (PET) preforms are inflated by pressurized air into a cavity to form plastic bottles. In a follow-up process, these packages are filled by a separate machine with the desired liquid product. In contrast to that, liquid-forming combines the blowing and filling stages by directly using the liquid product to form a plastic bottle. Through this substitution, two main challenges arise. Firstly, there are significant inertia effects through the liquid mass, leading to additional reaction forces and a spatially inhomogeneous pressure distribution inside the preform. Secondly, the heat transfer between preform and fluid is drastically increased. Because of this cooling effect, a specific combination of forming speed as well as initial preform and liquid temperatures is necessary to avoid thermally induced preform rupture. This is based on the fact that the formability of PET rapidly declines below its glass transition temperature (Tg). Consequently, a process control requires the knowledge of how the process parameters influence the preform cooling. In this paper, a numerical simulation of the liquid-forming process (LF) is introduced including the preform cooling during forming. In addition, the strain-dependent self-heating effect of PET is implemented. Process experiments under different parameter combinations are conducted using simplified bottle geometry. Through a comparison of the results from experiments and from simulation, the influence of process parameters on the temperature drop and thus on thermally induced failure is determined. In this way, process understanding and control are increased.
Production Engineering | 2018
Markus Pohl; Markus Stommel
This paper presents an integrated passive damping approach in hybrid metal-CFRP parts for structural applications. In this concept a viscoelastic material is embedded in the joint zone of the hybrid component. To examine the connection strength single-lap-joint specimens were produced and tested and the influence of the used material combinations, different surface structures, and different process parameters i.e. the moment of cross-linking were evaluated. Afterwards, the metal-CFRP hybrids were tested in quasi-static tests to assess their connection strength and failure behaviour. Dynamic cyclic tensile tests with step-wise increased loading conditions were performed to determine the specimens damping behaviour and to estimate their fatigue performance. Finally, these results are compared to a state of the art metal-CFRP hybrid with rivets connecting both materials.
Polymers | 2018
Michael Stanko; Markus Stommel
In this work, the characterisation of reaction kinetics of a methylene diphenyl diisocyanate (MDI)-based fast curing polyurethane resin (PUR) and the mathematical description of its curing process are presented. For the modelling of the reaction process isoconversional methods, which are also called model-free approaches, are used instead of model-based approaches. One of the main challenges is the characterisation of a reactive system with a short pot life, which already starts to crosslink below room temperature. The main focus is the evaluation of the applicability of isoconversional methods for predicting the reaction kinetics of fast curing polyurethane resins. In order to realise this, a repeatable methodology for the determination of time- and temperature-dependent reaction curves using differential scanning calorimetry (DSC) is defined. The cure models defined by this method serve as the basis for process simulations of PUR processing technologies such as resin transfer moulding (RTM) or reactive injection moulding (RIM) and reactive extrusion (REX). The characterisation of the reaction kinetics using DSC measurements is carried out under isothermal and non-isothermal conditions. Within this work isoconversional methods have been applied successfully to experimentally determined DSC data sets. It is shown that the reaction kinetics of fast curing polyurethane resins can be predicted using this methods. Furthermore, it is demonstrated that the time-dependent change of conversion of the considered polyurethane under isothermal curing conditions can also be predicted using isoconversional methods based on non-isothermal DSC measurements. This results in a significant reduction in the experimental effort required to characterise and model the curing process of polyurethanes.
Archive | 2018
Daniel Klein; Markus Stommel; Johannes Zimmer
Lightweight construction is an ongoing task in packaging development. Consequently, the stability of packages during transport is gaining importance. This study contributes to the optimization of lightweight packaging concepts regarding their stability. A very widespread packaging concept is the distribution of goods on a pallet whereas a Polyethylene (PE) stretch film stabilizes the lightweight structure during the shipment. Usually, a stretch wrapping machine applies this stretch film to the pallet. The objective of this study is to support packaging development with a method that predicts the result of the wrapping process, based on the mechanical characterization of the stretch film. This result is not only defined by the amount of stretch film, its spatial distribution on the pallet and its internal stresses that result in a containment force. More accurate, this contribution also considers the influence of the deformation history of the stretch film during the wrapping process. By focusing on similarities of stretch wrappers rather than on differences, the influence of generalized process parameters on stretch film mechanics and thereby on pallet stability can be determined experimentally. For a practical use, the predictive method is accumulated in an analytic model of the wrapping process that can be verified experimentally. This paves the way for experimental and numerical approaches regarding the optimization of pallet stability.Lightweight construction is an ongoing task in packaging development. Consequently, the stability of packages during transport is gaining importance. This study contributes to the optimization of lightweight packaging concepts regarding their stability. A very widespread packaging concept is the distribution of goods on a pallet whereas a Polyethylene (PE) stretch film stabilizes the lightweight structure during the shipment. Usually, a stretch wrapping machine applies this stretch film to the pallet. The objective of this study is to support packaging development with a method that predicts the result of the wrapping process, based on the mechanical characterization of the stretch film. This result is not only defined by the amount of stretch film, its spatial distribution on the pallet and its internal stresses that result in a containment force. More accurate, this contribution also considers the influence of the deformation history of the stretch film during the wrapping process. By focusing on simila...
Archive | 2017
Valentin Zobel; Markus Stommel; Gerik Scheuermann
In some applications, it is necessary to look into gradients of (symmetric) second order tensor fields. These tensors are of third order. In three-dimensional space, we have 18 independent coefficients at each position, so the visualization of these fields provides a challenge. A particular case are stress gradients in structural mechanics. There are specific situations where the stress gradient is required together with the stress to study material behavior. Since the visualization community lacks methods to show these fields, we look at some preliminary ideas to design appropriate glyphs. We motivate our glyph designs by typical depictions of stress in engineering textbooks.
Key Engineering Materials | 2014
Johannes Zimmer; Markus Stommel
Liquid-Driven Stretch Blow Molding is a new and innovative method to produce PET bottles [. In the well-established Stretch Blow Molding (SBM) process, preforms are biaxially deformed by pressurized air into a cavity. The resulting bottles are transferred to a separate machine, where the desired product is filled in. In contrast to that, Liquid-Driven Stretch Blow Molding is characterized by employing the liquid product to deform the material. The former separated blowing and filling steps are thus combined to a single forming stage leading to numerous advantages in energy consumption, cycle time and machine footprint. In this paper, a numerical simulation of the new process is presented. An additional challenge compared to SBM simulations is thereby the consideration of the interaction between liquid and preform. The load application cannot be solely represented by the pressure because the influx behavior as well as gravity and inertia forces influence the preform deformation. A smoothed particle hydrodynamics (SPH) approach is applied to the simulation to incorporate the additional effects. The process model is evaluated by prototype experiments. In addition, a feasibility study shows the applicability of a rotary forming system to the new process.