Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Markus T. Bohnsack is active.

Publication


Featured researches published by Markus T. Bohnsack.


The EMBO Journal | 2002

Exp5 exports eEF1A via tRNA from nuclei and synergizes with other transport pathways to confine translation to the cytoplasm.

Markus T. Bohnsack; Kathrin Regener; Blanche Schwappach; Rainer Saffrich; Efrosyni Paraskeva; Enno Hartmann; Dirk Görlich

Importin β‐type transport receptors mediate the vast majority of transport pathways between cell nucleus and cytoplasm. We identify here the translation elongation factor 1A (eEF1A) as the predominant nuclear export substrate of RanBP21/exportin 5 (Exp5). This cargo–exportin interaction is rather un usual in that eEF1A binds the exportin not directly, but instead via aminoacylated tRNAs. Exp5 thus represents the second directly RNA‐binding exportin and mediates tRNA export in parallel with exportin‐t. It was suggested recently that 10–15% of the cellular translation would occur in the nucleus. Our data rule out such a scenario and instead suggest that nuclear translation is actively suppressed by the nuclear export machinery. We found that the vast majority of translation initiation factors (eIF2, eIF2B, eIF3, eIF4A1, eIF5 and eIF5B), all three elongation factors (eEF1A, eEF1B and eEF2) and the termination factor eRF1 are strictly excluded from nuclei. Besides Exp5 and importin 13, CRM1 and as yet unidentified exportins also contribute to the depletion of translation factors from nuclei.


Wiley Interdisciplinary Reviews - Rna | 2012

The box C/D and H/ACA snoRNPs: key players in the modification, processing and the dynamic folding of ribosomal RNA

Nicholas J. Watkins; Markus T. Bohnsack

Box C/D and H/ACA RNPs are essential ribonucleoprotein particles that are found throughout both eukaryotes [small nucleolar RNPs (snoRNPs)] and archaea [snoRNP‐like complexes (sRNPs)]. These complexes catalyze the site‐specific pseudouridylation and most of the methylation of ribosomal RNA (rRNA). The numerous modifications, which are clustered in functionally important regions of the rRNA, are important for rRNA folding and ribosome function. The RNA component of the complexes [small nucleolar RNA (snoRNA) or small RNA (sRNA)] functions in substrate binding by base pairing with the target site and as a scaffold coordinating the organization of the complex. In eukaryotes, a subset of snoRNPs do not catalyze modification but, through base pairing to the rRNA or flanking precursor sequences, direct pre‐rRNA folding and are essential for rRNA processing. In the last few years there have been significant advances in our understanding of the structure of archaeal sRNPs. High resolution structures of the archaeal C/D and H/ACA sRNPs have not only provided a detailed understanding of the molecular architecture of these complexes but also produced key insights into substrate binding and product release. In both cases, this is mediated by significant movement in the complexes. Advances have also been made in our knowledge of snoRNP recruitment and release from pre‐ribosome complexes in eukaryotes. New snoRNA–rRNA interactions have been documented, and the roles of RNA helicases in releasing snoRNP complexes from the rRNA have been described. WIREs RNA 2012, 3:397–414. doi: 10.1002/wrna.117


Journal of Cell Biology | 2007

A centriole- and RanGTP-independent spindle assembly pathway in meiosis I of vertebrate oocytes

Julien Dumont; Sebastian Petri; Franz Pellegrin; Marie-Emilie Terret; Markus T. Bohnsack; Pascale Rassinier; Virginie Georget; Petr Kalab; Oliver J. Gruss; Marie-Hélène Verlhac

Spindle formation is essential for stable inheritance of genetic material. Experiments in various systems indicate that Ran GTPase is crucial for meiotic and mitotic spindle assembly. Such an important role for Ran in chromatin-induced spindle assembly was initially demonstrated in Xenopus laevis egg extracts. However, the requirement of RanGTP in living meiotic cells has not been shown. In this study, we used a fluorescence resonance energy transfer probe to measure RanGTP-regulated release of importin β. A RanGTP-regulated gradient was established during meiosis I and was centered on chromosomes throughout mouse meiotic maturation. Manipulating levels of RanGTP in mice and X. laevis oocytes did not inhibit assembly of functional meiosis I spindles. However, meiosis II spindle assembly did not tolerate changes in the level of RanGTP in both species. These findings suggest that a mechanism common to vertebrates promotes meiosis I spindle formation in the absence of chromatin-induced microtubule production and centriole-based microtubule organizing centers.


Nature Cell Biology | 2006

A selective block of nuclear actin export stabilizes the giant nuclei of Xenopus oocytes.

Markus T. Bohnsack; Theis Stüven; Christa Kuhn; Volker C. Cordes; Dirk Görlich

Actin is a major cytoskeletal element and is normally kept cytoplasmic by exportin 6 (Exp6)-driven nuclear export. Here, we show that Exp6 recognizes actin features that are conserved from yeast to human. Surprisingly however, microinjected actin was not exported from Xenopus laevis oocyte nuclei, unless Exp6 was co-injected, indicating that the pathway is inactive in this cell type. Indeed, Exp6 is undetectable in oocytes, but is synthesized from meiotic maturation onwards, which explains how actin export resumes later in embryogenesis. Exp6 thus represents the first example of a strictly developmentally regulated nuclear transport pathway. We asked why Xenopus oocytes lack Exp6 and observed that ectopic application of Exp6 renders the giant oocyte nuclei extremely fragile. This effect correlates with the selective disappearance of a sponge-like intranuclear scaffold of F-actin. These nuclei have a normal G2-phase DNA content in a volume 100,000 times larger than nuclei of somatic cells. Apparently, their mechanical integrity cannot be maintained by chromatin and the associated nuclear matrix, but instead requires an intranuclear actin-scaffold.


Molecular Cell | 2009

Prp43 Bound at Different Sites on the Pre-rRNA Performs Distinct Functions in Ribosome Synthesis

Markus T. Bohnsack; Roman Martin; Sander Granneman; Maike Ruprecht; Enrico Schleiff; David Tollervey

Summary Yeast ribosome synthesis requires 19 different RNA helicases, but none of their pre-rRNA-binding sites were previously known, making their precise functions difficult to determine. Here we identify multiple binding sites for the helicase Prp43 in the 18S and 25S rRNA regions of pre-rRNAs, using UV crosslinking. Binding in 18S was predominantly within helix 44, close to the site of 18S 3′ cleavage, in which Prp43 is functionally implicated. Four major binding sites were identified in 25S, including helix 34. In strains depleted of Prp43 or expressing only catalytic point mutants, six snoRNAs that guide modifications close to helix 34 accumulated on preribosomes, implicating Prp43 in their release, whereas other snoRNAs showed reduced preribosome association. Prp43 was crosslinked to snoRNAs that target sequences close to its binding sites, indicating direct interactions. We propose that Prp43 acts on preribosomal regions surrounding each binding site, with distinct functions at different locations.


Cell Reports | 2013

The 5S RNP Couples p53 Homeostasis to Ribosome Biogenesis and Nucleolar Stress

Katherine E. Sloan; Markus T. Bohnsack; Nicholas J. Watkins

Summary Several proto-oncogenes and tumor suppressors regulate the production of ribosomes. Ribosome biogenesis is a major consumer of cellular energy, and defects result in p53 activation via repression of mouse double minute 2 (MDM2) homolog by the ribosomal proteins RPL5 and RPL11. Here, we report that RPL5 and RPL11 regulate p53 from the context of a ribosomal subcomplex, the 5S ribonucleoprotein particle (RNP). We provide evidence that the third component of this complex, the 5S rRNA, is critical for p53 regulation. In addition, we show that the 5S RNP is essential for the activation of p53 by p14ARF, a protein that is activated by oncogene overexpression. Our data show that the abundance of the 5S RNP, and therefore p53 levels, is determined by factors regulating 5S complex formation and ribosome integration, including the tumor suppressor PICT1. The 5S RNP therefore emerges as the critical coordinator of signaling pathways that couple cell proliferation with ribosome production.


Human Molecular Genetics | 2009

Zebrafish survival motor neuron mutants exhibit presynaptic neuromuscular junction defects

Kum-Loong Boon; Shu Xiao; Michelle L. McWhorter; Thomas M. Donn; Emma Wolf-Saxon; Markus T. Bohnsack; Cecilia B. Moens; Christine E. Beattie

Spinal muscular atrophy (SMA), a recessive genetic disease, affects lower motoneurons leading to denervation, atrophy, paralysis and in severe cases death. Reduced levels of survival motor neuron (SMN) protein cause SMA. As a first step towards generating a genetic model of SMA in zebrafish, we identified three smn mutations. Two of these alleles, smnY262stop and smnL265stop, were stop mutations that resulted in exon 7 truncation, whereas the third, smnG264D, was a missense mutation corresponding to an amino acid altered in human SMA patients. Smn protein levels were low/undetectable in homozygous mutants consistent with unstable protein products. Homozygous mutants from all three alleles were smaller and survived on the basis of maternal Smn dying during the second week of larval development. Analysis of the neuromuscular system in these mutants revealed a decrease in the synaptic vesicle protein, SV2. However, two other synaptic vesicle proteins, synaptotagmin and synaptophysin were unaffected. To address whether the SV2 decrease was due specifically to Smn in motoneurons, we tested whether expressing human SMN protein exclusively in motoneurons in smn mutants could rescue the phenotype. For this, we generated a transgenic zebrafish line with human SMN driven by the motoneuron-specific zebrafish hb9 promoter and then generated smn mutant lines carrying this transgene. We found that introducing human SMN specifically into motoneurons rescued the SV2 decrease observed in smn mutants. Our analysis indicates the requirement for Smn in motoneurons to maintain SV2 in presynaptic terminals indicating that Smn, either directly or indirectly, plays a role in presynaptic integrity.


The EMBO Journal | 2004

Exportin 7 defines a novel general nuclear export pathway

José-Manuel Mingot; Markus T. Bohnsack; Ursula Jäkle; Dirk Görlich

Most transport pathways between cell nucleus and cytoplasm are mediated by nuclear transport receptors of the importin β family. These receptors are in continuous circulation between the two compartments and transfer cargo molecules from one side of the nuclear envelope to the other. RanBP16 is a family member from higher eukaryotes of so far unknown function. We now show that it exports p50RhoGAP from the nucleus and thereby confines this activity to the cytoplasm. It also accounts for nuclear exclusion of 14‐3‐3σ, which in turn is known to anchor, for example, cyclin‐dependent kinases in the cytoplasm. Our data further suggest that RanBP16 exports several additional cargoes. It thus appears to be a nuclear export mediator with broad substrate specificity and we will therefore refer to it as exportin 7 (Exp7). Finally, we demonstrate that Exp7‐dependent nuclear export signals differ fundamentally from the leucine‐rich, CRM1‐dependent ones: First, they are not just short linear sequences, but instead include folded motifs. Second, basic residues are critical for Exp7 recruitment.


Journal of Biological Chemistry | 2007

Functional and Phylogenetic Properties of the Pore-forming β-Barrel Transporters of the Omp85 Family

Rolf Bredemeier; Thomas Schlegel; Franziska Ertel; Aleksandar Vojta; Ljudmila V. Borissenko; Markus T. Bohnsack; Michael Groll; Arndt von Haeseler; Enrico Schleiff

β-Barrel-shaped channels of the Omp85 family are involved in the translocation or assembly of proteins of bacterial, mitochondrial, and plastidic outer membranes. We have compared these proteins to understand the evolutionary development of the translocators. We have demonstrated that the proteins from proteobacteria and mitochondria have a pore diameter that is at least five times smaller than found for the Omp85 in cyanobacteria and plastids. This finding can explain why Omp85 from cyanobacteria (but not the homologous protein from proteobacteria) was remodeled to become the protein translocation pore after endosymbiosis. Further, the pore-forming region of the Omp85 proteins is restricted to the C terminus. Based on a phylogenetic analysis we have shown that the pore-forming domain displays a different evolutionary relationship than the N-terminal domain. In line with this, the affinity of the N-terminal domain to the C-terminal region of the Omp85 from plastids and cyanobacteria differs, even though the N-terminal domain is involved in gating of the pore in both groups. We have further shown that the N-terminal domain of nOmp85 takes part in homo-oligomerization. Thereby, the differences in the phylogeny of the two domains are explained by different functional constraints acting on the regions. The pore-forming domain, however, is further divided into two functional regions, where the distal C terminus itself forms a dimeric pore. Based on functional and phylogenetic analysis, we suggest an evolutionary scenario that explains the origin of the contemporary translocon.


Nucleic Acids Research | 2011

The Bowen–Conradi syndrome protein Nep1 (Emg1) has a dual role in eukaryotic ribosome biogenesis, as an essential assembly factor and in the methylation of Ψ1191 in yeast 18S rRNA

Britta Meyer; Jan Philip Wurm; Peter Kötter; Matthias S. Leisegang; Valeska Schilling; Markus Buchhaupt; Martin Held; Ute Bahr; Michael Karas; Alexander Heckel; Markus T. Bohnsack; Jens Wöhnert; Karl-Dieter Entian

The Nep1 (Emg1) SPOUT-class methyltransferase is an essential ribosome assembly factor and the human Bowen–Conradi syndrome (BCS) is caused by a specific Nep1D86G mutation. We recently showed in vitro that Methanocaldococcus jannaschii Nep1 is a sequence-specific pseudouridine-N1-methyltransferase. Here, we show that in yeast the in vivo target site for Nep1-catalyzed methylation is located within loop 35 of the 18S rRNA that contains the unique hypermodification of U1191 to 1-methyl-3-(3-amino-3-carboxypropyl)-pseudouri-dine (m1acp3Ψ). Specific 14C-methionine labelling of 18S rRNA in yeast mutants showed that Nep1 is not required for acp-modification but suggested a function in Ψ1191 methylation. ESI MS analysis of acp-modified Ψ-nucleosides in a Δnep1-mutant showed that Nep1 catalyzes the Ψ1191 methylation in vivo. Remarkably, the restored growth of a nep1-1ts mutant upon addition of S-adenosylmethionine was even observed after preventing U1191 methylation in a Δsnr35 mutant. This strongly suggests a dual Nep1 function, as Ψ1191-methyltransferase and ribosome assembly factor. Interestingly, the Nep1 methyltransferase activity is not affected upon introduction of the BCS mutation. Instead, the mutated protein shows enhanced dimerization propensity and increased affinity for its RNA-target in vitro. Furthermore, the BCS mutation prevents nucleolar accumulation of Nep1, which could be the reason for reduced growth in yeast and the Bowen-Conradi syndrome.

Collaboration


Dive into the Markus T. Bohnsack's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Enrico Schleiff

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roman Martin

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Sara Haag

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Ahmed S. Warda

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Benjamin L. Weis

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge