Markus Theurl
Innsbruck Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Markus Theurl.
European Journal of Pharmacology | 2008
Margot Egger; Arno Beer; Markus Theurl; Wilfried Schgoer; Benjamin Hotter; Tobias Tatarczyk; Danijela Vasiljevic; Silke Frauscher; Josef Marksteiner; Josef R. Patsch; Peter Schratzberger; Angela Djanani; Sushil K. Mahata; Rudolf Kirchmair
Several members of the neuropeptide family exert chemotactic actions on blood monocytes consistent with neurogenic inflammation. Furthermore, chromogranin A (CgA) containing Alzheimer plaques are characterized by extensive microglia activation and such activation induces neuronal damage. We therefore hypothesized that the catecholamine release inhibitory peptide catestatin (hCgA(352-372)) would induce directed monocyte migration. We demonstrate that catestatin dose-dependently stimulates chemotaxis of human peripheral blood monocytes, exhibiting its maximal effect at a concentration of 1 nM comparable to the established chemoattractant formylated peptide Met-Leu-Phe (fMLP). The naturally occurring catestatin variants differed in their chemotactic property insofar as that the Pro370Leu variant was even more potent than wild type, whereas the Gly364Ser variant was less effective. Specificity of this effect was shown by inhibition of catestatin-induced chemotaxis by a specific neutralizing antibody. In addition, catestatin mediated effect was blocked by dimethylsphingosine and treatment with endothelial differentiation gene (Edg)-1 and Edg-3 antisense RNA as well as by incubation with pertussis toxin and genistein indicating involvement of tyrosine kinase receptor-, G-protein- and sphingosine-1-phosphate signaling. Catestatin also stimulated Akt- and extracellular signal related kinase (ERK)-phosphorylation and catestatin-induced chemotaxis was blocked by blockers of phosphoinositide-3 (PI-3) kinase and nitric oxide as well as by inhibition of the mitogen-activated protein kinases (MAPK) system indicating involvement of these signal transduction pathways. In summary, our data indicate that catestatin induces monocyte chemotaxis by activation of a variety of signal transduction pathways suggesting a role of this peptide as an inflammatory cytokine.
Circulation Research | 2010
Markus Theurl; Wilfried Schgoer; Karin Albrecht; Johannes Jeschke; Margot Egger; Arno Beer; Danijela Vasiljevic; Song Rong; Anna Maria Wolf; Ferdinand H. Bahlmann; Josef R. Patsch; Dominik Wolf; Peter Schratzberger; Sushil K. Mahata; Rudolf Kirchmair
Rationale: The neuropeptide catestatin is an endogenous nicotinic cholinergic antagonist that acts as a pleiotropic hormone. Objective: Catestatin shares several functions with angiogenic factors. We therefore reasoned that catestatin induces growth of new blood vessels. Methods and Results: Catestatin induced migration, proliferation, and antiapoptosis in endothelial cells and exerted capillary tube formation in vitro in a Matrigel assay, and such effects were mediated via G protein, mitogen-activated protein kinase, and Akt. Catestatin-induced endothelial cell functions are further mediated by basic fibroblast growth factor, as shown by blockade of effects by a neutralizing fibroblast growth factor antibody. Furthermore, catestatin released basic fibroblast growth factor from endothelial cells and stimulated fibroblast growth factor signaling. In addition to its function on endothelial cells, catestatin also exerted effects on endothelial progenitor cells and vascular smooth muscle cells. In vivo, catestatin induced angiogenesis in the mouse cornea neovascularization assay and increased blood perfusion and number of capillaries in the hindlimb ischemia model. In addition to angiogenesis, catestatin increased density of arterioles/arteries and incorporation of endothelial progenitor cells in the hindlimb ischemia model, indicating induction of arteriogenesis and postnatal vasculogenesis. Conclusion: We conclude that catestatin acts as a novel angiogenic cytokine via a basic fibroblast growth factor–dependent mechanism.
The FASEB Journal | 2007
Margot Egger; Wilfried Schgoer; Arno Beer; Johannes Jeschke; Johannes Leierer; Markus Theurl; Silke Frauscher; Oren M. Tepper; Andreas Niederwanger; Andreas Ritsch; Marianne Kearney; Julia Wanschitz; Geoffrey C. Gurtner; Reiner Fischer-Colbrie; Guenter Weiss; Hildegunde Piza-Katzer; Douglas W. Losordo; Josef R. Patsch; Peter Schratzberger; Rudolf Kirchmair
Expression of angiogenic cytokines like vascular endothelial growth factor is enhanced by hypoxia. We tested the hypothesis that decreased oxygen levels up‐regulate the angiogenic factor sec‐retoneurin. In vivo, muscle cells of mouse ischemic hind limbs showed increased secretoneurin expression, and inhibition of secretoneurin by a neutralizing antibody impaired the angiogenic response in this ischemia model. In a mouse soft tissue model of hypoxia, secretoneurin was increased in subcutaneous muscle fibers. In vitro, secretoneurin mRNA and protein were up‐regulated in L6 myoblast cells after exposure to low oxygen levels. The hypoxia‐depen‐dent regulation of secretoneurin was tissue specific and was not observed in endothelial cells, vascular smooth muscle cells, or AtT20 pituitary tumor cells. The hypoxia‐dependent induction of secretoneurin in L6 myoblasts is regulated by hypoxia‐inducible factor‐la, since inhibition of this factor using si‐RNA inhibited up‐regulation of secretoneurin. Induction of secretoneurin by hypoxia was dependent on basic fibroblast growth factor in vivo and in vitro, and inhibition of this regulation by heparinase suggests an involvement of low‐affinity basic fibroblast growth factor binding sites. In summary, our data show that the angiogenic cytokine secretoneurin is up‐regulated by hypoxia in muscle cells by hypoxia‐inducible factor‐1α‐ and basic fibroblast growth factor‐dependent mechanisms.—Egger, M., Schgoer, W., Beer, A. G. E., Jeschke, J., Leierer, J., Theurl, M., Frauscher, S., Tepper, O. M., Niederwanger, A., Ritsch, A., Kearney, M., Wanschitz, J., Gurtner, G. C., Fischer‐Colbrie, R., Weiss, G., Piza‐Katzer, H., Losordo, D. W., Patsch, J. R., Schratzberger, P., Kirchmair, R. Hypoxia up‐regulates the angiogenic cytokine secretoneurin via an HIF‐1α‐ and basic FGF‐dependent pathway in muscle cells. FASEB J. 21, 2906–2917 (2007)
Circulation | 2012
Karin Albrecht-Schgoer; Wilfried Schgoer; Johannes Holfeld; Markus Theurl; Dominik Wiedemann; Christina Maria Steger; Rajesh Gupta; Severin Semsroth; Reiner Fischer-Colbrie; Arno Beer; Ursula Stanzl; Eva Huber; Sol Misener; Daniel Dejaco; Raj Kishore; Otmar Pachinger; Michael Grimm; Nikolaos Bonaros; Rudolf Kirchmair
Background—Secretoneurin is a neuropeptide located in nerve fibers along blood vessels, is upregulated by hypoxia, and induces angiogenesis. We tested the hypothesis that secretoneurin gene therapy exerts beneficial effects in a rat model of myocardial infarction and evaluated the mechanism of action on coronary endothelial cells. Methods and Results—In vivo secretoneurin improved left ventricular function, inhibited remodeling, and reduced scar formation. In the infarct border zone, secretoneurin induced coronary angiogenesis, as shown by increased density of capillaries and arteries. In vitro secretoneurin induced capillary tubes, stimulated proliferation, inhibited apoptosis, and activated Akt and extracellular signal-regulated kinase in coronary endothelial cells. Effects were abrogated by a vascular endothelial growth factor (VEGF) antibody, and secretoneurin stimulated VEGF receptors in these cells. Secretoneurin furthermore increased binding of VEGF to endothelial cells, and binding was blocked by heparinase, indicating that secretoneurin stimulates binding of VEGF to heparan sulfate proteoglycan binding sites. Additionally, secretoneurin increased binding of VEGF to its coreceptor neuropilin-1. In endothelial cells, secretoneurin also stimulated fibroblast growth factor receptor-3 and insulin-like growth factor-1 receptor, and in coronary vascular smooth muscle cells, we observed stimulation of VEGF receptor-1 and fibroblast growth factor receptor-3. Exposure of cardiac myocytes to hypoxia and ischemic heart after myocardial infarction revealed increased secretoneurin messenger RNA and protein. Conclusions—Our data show that secretoneurin acts as an endogenous stimulator of VEGF signaling in coronary endothelial cells by enhancing binding of VEGF to low-affinity binding sites and neuropilin-1 and stimulates further growth factor receptors like fibroblast growth factor receptor-3. Our in vivo findings indicate that secretoneurin may be a promising therapeutic tool in ischemic heart disease.
Circulation Research | 2009
Wilfried Schgoer; Markus Theurl; Johannes Jeschke; Arno Beer; Karin Albrecht; Roland Gander; Song Rong; Danijela Vasiljevic; Margot Egger; Anna Maria Wolf; Silke Frauscher; Bernhard Koller; Ivan Tancevski; Josef R. Patsch; Peter Schratzberger; Hildegunde Piza-Katzer; Andreas Ritsch; Ferdinand H. Bahlmann; Reiner Fischer-Colbrie; Dominik Wolf; Rudolf Kirchmair
Rationale: The neuropeptide secretoneurin induces angiogenesis and postnatal vasculogenesis and is upregulated by hypoxia in skeletal muscle cells. Objective: We sought to investigate the effects of secretoneurin on therapeutic angiogenesis. Methods and Results: We generated a secretoneurin gene therapy vector. In the mouse hindlimb ischemia model secretoneurin gene therapy by intramuscular plasmid injection significantly increased secretoneurin content of injected muscles, improved functional parameters, reduced tissue necrosis, and restored blood perfusion. Increased muscular density of capillaries and arterioles/arteries demonstrates the capability of secretoneurin gene therapy to induce therapeutic angiogenesis and arteriogenesis. Furthermore, recruitment of endothelial progenitor cells was enhanced by secretoneurin gene therapy consistent with induction of postnatal vasculogenesis. Additionally, secretoneurin was able to activate nitric oxide synthase in endothelial cells and inhibition of nitric oxide inhibited secretoneurin-induced effects on chemotaxis and capillary tube formation in vitro. In vivo, secretoneurin induced nitric oxide production and inhibition of nitric oxide attenuated secretoneurin-induced effects on blood perfusion, angiogenesis, arteriogenesis, and vasculogenesis. Secretoneurin also induced upregulation of basic fibroblast growth factor and platelet-derived growth factor-B in endothelial cells. Conclusions: In summary, our data indicate that gene therapy with secretoneurin induces therapeutic angiogenesis, arteriogenesis, and vasculogenesis in the hindlimb ischemia model by a nitric oxide–dependent mechanism.
Cell Metabolism | 2014
Egon Demetz; Andrea Schroll; Kristina Auer; Christiane Heim; Josef R. Patsch; Philipp Eller; Markus Theurl; Igor Theurl; Milan Theurl; Markus Seifert; Daniela Lener; Ursula Stanzl; David Haschka; Malte Asshoff; Stefanie Dichtl; Manfred Nairz; Eva Huber; Martin Stadlinger; Alexander R. Moschen; Xiaorong Li; Petra Pallweber; Hubert Scharnagl; Tatjana Stojakovic; Winfried März; Marcus E. Kleber; Katia Garlaschelli; Patrizia Uboldi; Alberico L. Catapano; Frans Stellaard; Mats Rudling
Summary Cholesterol metabolism is closely interrelated with cardiovascular disease in humans. Dietary supplementation with omega-6 polyunsaturated fatty acids including arachidonic acid (AA) was shown to favorably affect plasma LDL-C and HDL-C. However, the underlying mechanisms are poorly understood. By combining data from a GWAS screening in >100,000 individuals of European ancestry, mediator lipidomics, and functional validation studies in mice, we identify the AA metabolome as an important regulator of cholesterol homeostasis. Pharmacological modulation of AA metabolism by aspirin induced hepatic generation of leukotrienes (LTs) and lipoxins (LXs), thereby increasing hepatic expression of the bile salt export pump Abcb11. Induction of Abcb11 translated in enhanced reverse cholesterol transport, one key function of HDL. Further characterization of the bioactive AA-derivatives identified LX mimetics to lower plasma LDL-C. Our results define the AA metabolome as conserved regulator of cholesterol metabolism, and identify AA derivatives as promising therapeutics to treat cardiovascular disease in humans.
PLOS ONE | 2014
Johannes Holfeld; Can Tepeköylü; Stefan Blunder; Daniela Lobenwein; Elke Kirchmair; Marion Dietl; Radoslaw Kozaryn; Daniela Lener; Markus Theurl; Patrick Paulus; Rudolf Kirchmair; Michael Grimm
Objectives Low energy shock waves have been shown to induce angiogenesis, improve left ventricular ejection fraction and decrease angina symptoms in patients suffering from chronic ischemic heart disease. Whether there is as well an effect in acute ischemia was not yet investigated. Methods Hind-limb ischemia was induced in 10–12 weeks old male C57/Bl6 wild-type mice by excision of the left femoral artery. Animals were randomly divided in a treatment group (SWT, 300 shock waves at 0.1 mJ/mm2, 5 Hz) and untreated controls (CTR), n = 10 per group. The treatment group received shock wave therapy immediately after surgery. Results Higher gene expression and protein levels of angiogenic factors VEGF-A and PlGF, as well as their receptors Flt-1 and KDR have been found. This resulted in significantly more vessels per high-power field in SWT compared to controls. Improvement of blood perfusion in treatment animals was confirmed by laser Doppler perfusion imaging. Receptor tyrosine kinase profiler revealed significant phosphorylation of VEGF receptor 2 as an underlying mechanism of action. The effect of VEGF signaling was abolished upon incubation with a VEGFR2 inhibitor indicating that the effect is indeed VEGFR 2 dependent. Conclusions Low energy shock wave treatment induces angiogenesis in acute ischemia via VEGF receptor 2 stimulation and shows the same promising effects as known from chronic myocardial ischemia. It may therefore develop as an adjunct to the treatment armentarium of acute muscle ischemia in limbs and myocardium.
Angiogenesis | 2014
Karin Albrecht-Schgoer; Wilfried Schgoer; Markus Theurl; Ursula Stanzl; Daniela Lener; Daniel Dejaco; Bernhard Zelger; Wolfgang M. Franz; Rudolf Kirchmair
Diabetic foot ulcers represent a therapeutic problem of high clinical relevance. Reduced vascular supply, neuropathy and diminished expression of growth factors strongly contribute to wound healing impairment in diabetes. Secretoneurin, an angiogenic neuropeptide, has been shown to improve tissue perfusion in different animal models by increasing the amount of vessels in affected areas. Therefore, topical secretoneurin gene therapy was tested in a full thickness wound healing model in diabetic db/db mice. Secretoneurin significantly accelerated wound closure in these mice and immunohistochemistry revealed higher capillary and arteriole density in the wounded area compared to control mice. In-vitro, the mechanism of action of secretoneurin on human dermal microvascular endothelial cells was evaluated in normal and diabetic cells. Secretoneurin shows positive effects on in vitro angiogenesis, proliferation and apoptosis of these cells in a basic fibroblast growth factor dependent manner. A small molecular weight inhibitor revealed fibroblast growth factor receptor 3 as the main receptor for secretoneurin mediated effects. Additionally, we could identify heparan-sulfates as important co-factor of secretoneurin induced binding of basic fibroblast growth factor to human dermal endothelial cells. We suggest topical secretoneurin plasmid therapy as new tool for delayed wound healing in patients suffering from diabetes.
PLOS ONE | 2013
Wilfried Schgoer; Markus Theurl; Karin Albrecht-Schgoer; Verena Jonach; Bernhard Koller; Daniela Lener; Wolfgang M. Franz; Rudolf Kirchmair
Deficient angiogenesis after ischemia may contribute to worse outcome of peripheral arterial disease in patients with diabetes mellitus. Based on our previous work where we demonstrated that Secretoneurin (SN) is up-regulated under hypoxic conditions and enhances angiogenesis, we analyzed the therapeutic potential of SN gene therapy using a model of severe hind limb ischemia in streptozotocin-induced diabetic mice (STZ-DM). After induction of hind limb ischemia, blood flow was assessed by means of laser Doppler perfusion imaging (LDPI) and increased blood perfusion in the SN-treated animal group was observed. These results were complemented by the clinical observation of reduced necrosis and by an increased number of capillaries and arterioles in the SN-treated animal group. In vitro, we found that SN is capable of promoting proliferation and chemotaxis and reduces apoptosis in HUVECs cultured under hyperglycemic conditions. Additionally, SN activated ERK, eNOS and especially AKT as well as EGF-receptor in hyperglycemic HUVECs. In conclusion, we show that SN gene therapy improves post-ischemic neovascularization in diabetic mice through stimulation of angiogenesis and arteriogenesis indicating a possible therapeutic role of this factor in ischemia-related diseases in diabetic patients.
Leukemia | 2017
Emir Hadzijusufovic; Karin Albrecht-Schgoer; Kilian Huber; Gregor Hoermann; Florian Grebien; Gregor Eisenwort; Wilfried Schgoer; Susanne Herndlhofer; Christoph Kaun; Markus Theurl; Wolfgang R. Sperr; Uwe Rix; Irina Sadovnik; Bernd Jilma; Gerit-Holger Schernthaner; Johann Wojta; Dominik Wolf; Giulio Superti-Furga; Rudolf Kirchmair; Peter Valent
The BCR/ABL1 inhibitor Nilotinib is increasingly used to treat patients with chronic myeloid leukemia (CML). Although otherwise well-tolerated, Nilotinib has been associated with the occurrence of progressive arterial occlusive disease (AOD). Our objective was to determine the exact frequency of AOD and examine in vitro and in vivo effects of Nilotinib and Imatinib on endothelial cells to explain AOD-development. In contrast to Imatinib, Nilotinib was found to upregulate pro-atherogenic adhesion-proteins (ICAM-1, E-selectin, VCAM-1) on human endothelial cells. Nilotinib also suppressed endothelial cell proliferation, migration and tube-formation and bound to a distinct set of target-kinases, relevant to angiogenesis and atherosclerosis, including angiopoietin receptor-1 TEK, ABL-2, JAK1 and MAP-kinases. Nilotinib and siRNA against ABL-2 also suppressed KDR expression. In addition, Nilotinib augmented atherosclerosis in ApoE−/− mice and blocked reperfusion and angiogenesis in a hindlimb-ischemia model of arterial occlusion, whereas Imatinib showed no comparable effects. Clinically overt AOD-events were found to accumulate over time in Nilotinib-treated patients. After a median observation-time of 2.0 years, the AOD-frequency was higher in these patients (29.4%) compared to risk factor- and age-matched controls (<5%). Together, Nilotinib exerts direct pro-atherogenic and anti-angiogenic effects on vascular endothelial cells, which may contribute to development of AOD in patients with CML.