Markys G. Cain
National Physical Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Markys G. Cain.
Journal of Physics D | 2007
M. Vopsaroiu; John Blackburn; Markys G. Cain
The existing magnetic recording read head technologies use one of the well-known magneto-resistance effects (i.e. anisotropic magneto-resistance, giant magneto-resistance or tunnelling magneto-resistance (TMR)) to read back the data from the magnetic recording medium. These are usually sophisticated devices that require a dc test current flowing through the sensor stack in order to measure its change in resistance (i.e. amplitude response signal) as a function of the fringing magnetic flux of the recorded bits, when the reader moves along the recorded track. In this paper, we propose the design of a new kind of highly sensitive read sensor for magnetic recording heads, which directly produces a voltage response without the need for a test current. This new design is based on the magneto-electric effect in laminated multiferroic materials. Such a magnetic read head is much simplified in terms of sensor construction (i.e. number of layers involved and horizontal biasing requirements) and has a range of potential advantages including similar sensitivity to that of the TMR heads, reduced power consumption, better thermal performances, excellent high frequency operation and reduced cost of production.
Energy and Environmental Science | 2013
Joe Briscoe; Nimra Jalali; Peter Woolliams; Mark Stewart; Paul M. Weaver; Markys G. Cain; Steve Dunn
Electromechanical energy harvesting converts mechanical energy from the environment, such as vibration or human activity, into electrical energy that can be used to power a low power electronic device. Nanostructured piezoelectric energy harvesting devices, often termed nanogenerators, have rapidly increased in measured output over recent years. With these improvements nanogenerators have the potential to compete with more traditional micro- or macroscopic energy harvesting devices based on piezoelectric ceramics such as lead zirconate titanate (PZT), polymers such as polyvinylidene fluoride (PVDF) or electrostatic, electret or electromagnetic kinetic energy harvesters. Power output from a nanogenerator is most commonly measured through open-circuit voltage and/or short-circuit current, where power may be estimated from the product of these values. Here we show that such measures do not provide a complete picture of the output of these devices, and can be misleading when attempting to compare alternative designs. In order to compare the power output from a nanogenerator, techniques must be improved in line with those used for more established technologies. We compare ZnO nanorod/poly(methyl methacrylate) (PMMA) and ZnO nanorod/poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) devices, and show that despite an open-circuit voltage nearly three times lower the ZnO/PEDOT:PSS device generates 150 times more power on an optimum load. In addition, it is shown that the peak voltage and current output can be increased by straining the device more rapidly and therefore time-averaged power, or time-integrated measures of output such as total energy or total charge should be calculated. Finally, the internal impedance of the devices is characterised to develop an understanding of their behaviour and shows a much higher internal resistance but lower capacitive impedance for the ZnO/PMMA device. It is hoped that by following more rigorous testing procedures the performance of nanostructured piezoelectric devices can be compared more realistically to other energy harvesting technologies and improvements can be rapidly driven by a more complete understanding of their behaviour.
Journal of Micromechanics and Microengineering | 2006
David-A Mendels; Martin Lowe; Alexandre Cuenat; Markys G. Cain; Elena Vallejo; David Ellis; François Mendels
A hybrid method is introduced for the calibration of the spring constants of atomic force microscopy cantilevers. It is based on the minimization of the difference between the modelled and experimentally determined full-field displacement maps of the surface of the cantilever in motion at several resonant frequencies. The dynamic mechanical response of the cantilever to periodic motion is measured in a vacuum by means of a scanning vibrometer. Given the dimensions of the cantilever, the obtained surface displacements together with analytical or numerical models are used to resolve the physical unknowns of the probe. These are the elastic properties of the cantilever, and the residual stress state built up during the deposition of the reflective coating on the backside of the cantilever. The scanning vibrometry experiment allows the precise determination of the first ten resonant frequencies and the modes associated. After optimization of the elastic properties and the surface stress, the relative agreement between all resonant frequencies is better than 1% with the finite element model and 2% with the Timoshenko beam equation. The agreement between surface displacements is also excellent when the damping constant of the system has been determined, except for the first lateral mode, which exhibits strong coupling to a reflection of the first torsional mode. Because all the displacements at resonance are known, it is possible to decouple these modes, and the result is shown to compare well with the model. The cantilever being fully characterized (geometry, materials, residual stress state and boundary conditions), it is straightforward to deduce all its spring constants, in the linear and nonlinear elastic regimes.
Journal of Physics D | 2012
Giuseppe Viola; Huanpo Ning; Michael J. Reece; Rory M. Wilson; Tatiana M. Correia; Paul M. Weaver; Markys G. Cain; Haixue Yan
The effects of temperature and electric field-induced structural modifications on the energy storage properties of 0.95[0.94Bi0.5Na0.5TiO3–0.06BaTiO3]–0.05K0.5Na0.5NbO3 (BNT–BT–5KNN) ceramics were investigated. X-ray diffraction performed on unpoled and poled ceramics in the temperature range 25–500 °C suggested an increment in the rhombohedral phase intensity peaks and in the tetragonal distortion after electrical poling. The rhombohedral phase content reduced with increasing temperature in both unpoled and poled ceramics. In the unpoled ceramic, the rhombohedral phase eventually disappeared, while it survived in the poled specimen up to 500 °C. The stabilization of the rhombohedral ferroelectric phase by dc poling produced remarkable differences in the temperature dependence of permittivity, loss, current–polarization–electric field loops and energy density. As a consequence of a reversible transition induced by an alternating electric field, competitive energy densities (0.39–0.51 J cm−3 in the range 25–175 °C) with those of lead-based and lead-free bulk ceramics recently developed was obtained, indicating bismuth-based perovskites as potential lead-free systems for energy storage applications.
Applied Physics Letters | 2012
Mark Stewart; Paul M. Weaver; Markys G. Cain
Piezoelectric energy harvesting cantilevers provide a simple, compact low cost construction method for energy harvesting from vibrational sources. Beam theory predicts a linear distribution of strain along the length of the beam, but the conversion of this strain to electrical energy is dependent on the coverage of the beam with active material. In this paper, we demonstrate how re-distribution of charge within the piezoelectric leads to losses that can be as high as 25% of the potential generated power. Reducing the area coverage of the piezoelectric is shown to significantly improve cantilever power output, with the optimum coverage being 2/3.
Journal of the American Chemical Society | 2012
Man Rong Li; Umut Adem; Sean R. C. McMitchell; Zhongling Xu; Chris I. Thomas; John E. Warren; Duong V. Giap; Hongjun Niu; Xinming Wan; Robert G. Palgrave; Florian Schiffmann; Furio Corà; Ben Slater; T. L. Burnett; Markys G. Cain; Artem M. Abakumov; Gustaaf Van Tendeloo; M F Thomas; Matthew J. Rosseinsky; John B. Claridge
Combining long-range magnetic order with polarity in the same structure is a prerequisite for the design of (magnetoelectric) multiferroic materials. There are now several demonstrated strategies to achieve this goal, but retaining magnetic order above room temperature remains a difficult target. Iron oxides in the +3 oxidation state have high magnetic ordering temperatures due to the size of the coupled moments. Here we prepare and characterize ScFeO3 (SFO), which under pressure and in strain-stabilized thin films adopts a polar variant of the corundum structure, one of the archetypal binary oxide structures. Polar corundum ScFeO3 has a weak ferromagnetic ground state below 356 K—this is in contrast to the purely antiferromagnetic ground state adopted by the well-studied ferroelectric BiFeO3.
Smart Materials and Structures | 2006
Chris R. Bowen; Ron Stevens; L J Nelson; Andrew C E Dent; G Dolman; B Su; T W Button; Markys G. Cain; Mark Stewart
Piezoelectric fibres are finding increasing application in a variety of piezoelectric composites, including active fibre composites (AFCs). This paper describes the manufacture and characterization of lead zirconate titanate (PZT) fibres manufactured by viscous plastic processing (VPP). The manufacturing method will be described along with a systematic characterization of the macrostructure, microstructure, phase composition and low and high field piezoelectric properties. A comparison with other available PZT fibres will be made, which demonstrates that the VPP PZT fibres display high piezoelectric coefficients.
Journal of Applied Physics | 2006
John Blackburn; Markys G. Cain
Methods for piezoelectric characterization include the standard resonance test. At higher powers, however, the material’s inherent nonlinearity acts to significantly affect the expected resonance response. High-power resonance methods have previously been developed to describe piezoelectric nonlinearity. In this article we specify and describe the approximations adopted in the current theory and propose a more rigorous theory derived from fundamental principles. We first use thermodynamics to derive the form of the constitutive equations. In particular, we propose that the envelope rather than instantaneous values of stress, strain, and electric field must appear in these equations to yield a type of nonlinearity which, nonetheless, yields a sinusoidal current for sinusoid applied voltage. An alternative approach is set out describing the highly nonlinear experimental data by fitting just one adjustable material parameter to the entire impedance response measured around resonance. Theoretical descriptions...
Journal of Applied Physics | 2008
M. Vopsaroiu; John Blackburn; Andrés Muñiz-Piniella; Markys G. Cain
Multiferroic (MF) materials are very promising candidates for new technologies and applications because they exhibit simultaneously multiple cooperative phenomena (i.e., magnetic, electric, and piezoeffects). The main feature of MF materials is the magnetoelectric (ME) effect, which can be used to engineer highly sensitive magnetic/electric sensors. In this paper, we discuss the requirements of a new kind of magnetic recording read head for 1Tbit∕in.2 recording densities, which is based on a MF structure. The MF sensor operates at room temperature via the strain mediated ME effect by producing a voltage signal in response to the magnetic field excitation from the recorded bits. We calculated the theoretical output from such a recording read head assuming a magnetic recording density of 1Tbit∕in.2. Our calculations demonstrate that the proposed read head technology could replace in the future the conventional magnetoresistive read heads bringing also a number of considerable advantages, as detailed in the ...
Applied Physics Letters | 2012
Mark McMillen; Alan Douglas; Tatiana M. Correia; Paul M. Weaver; Markys G. Cain; J. M. Gregg
The manner in which ultrathin films of alumina, deposited at the dielectric-electrode interface, affect the recoverable energy density associated with (BiFeO3)0.6–(SrTiO3)0.4 (BFST) thin film capacitors has been characterised. Approximately 6 nm of alumina on 400 nm of BFST increases the maximum recoverable energy of the system by around 30% from ∼13 Jcc−1 to ∼17 Jcc−1. Essentially, the alumina acts in the same way as a naturally present parasitic “dead-layer,” distorting the polarisation-field response such that the ultimate polarisation associated with the BFST is pushed to higher values of electric field. The work acts as a proof-of-principle to illustrate how the design of artificial interfacial dielectric “dead-layers” can increase energy densities in simple dielectric capacitors, allowing them to compete more generally with other energy storage technologies.