Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marla Koster is active.

Publication


Featured researches published by Marla Koster.


Journal of Virology | 2003

Novel Viral Disease Control Strategy: Adenovirus Expressing Alpha Interferon Rapidly Protects Swine from Foot-and-Mouth Disease

Jarasvech Chinsangaram; T. Mauro P. Moraes; Marla Koster; Marvin J. Grubman

ABSTRACT We have previously shown that replication of foot-and-mouth disease virus (FMDV) is highly sensitive to alpha/beta interferon (IFN-α/β). In the present study, we constructed recombinant, replication-defective human adenovirus type 5 vectors containing either porcine IFN-α or IFN-β (Ad5-pIFNα or Ad5-pIFNβ). We demonstrated that cells infected with these viruses express high levels of biologically active IFN. Swine inoculated with 109 PFU of a control Ad5 virus lacking the IFN gene and challenged 24 h later with FMDV developed typical signs of foot-and-mouth disease (FMD), including fever, vesicular lesions, and viremia. In contrast, swine inoculated with 109 PFU of Ad5-pIFNα were completely protected when challenged 24 h later with FMDV. These animals showed no clinical signs of FMD and no viremia and did not develop antibodies against viral nonstructural proteins, suggesting that complete protection from infection was achieved.


Journal of Virology | 2001

Inhibition of L-Deleted Foot-and-Mouth Disease Virus Replication by Alpha/Beta Interferon Involves Double-Stranded RNA-Dependent Protein Kinase

Jarasvech Chinsangaram; Marla Koster; Marvin J. Grubman

ABSTRACT We previously demonstrated that the ability of foot-and-mouth disease virus (FMDV) to form plaques in cell culture is associated with the suppression of alpha/beta interferon (IFN-α/β). In the present study, we used Escherichia coli-expressed porcine and bovine IFN-α or -β individually to demonstrate that each was equally effective in inhibiting FMDV replication. The block in FMDV replication appeared to be at the level of protein translation, suggesting a role for double-stranded RNA-dependent protein kinase (PKR). In support of these findings, treatment of porcine and bovine cells with 2-aminopurine, an inhibitor of PKR, increased the yield of virus 8.8- and 11.2-fold, respectively, compared to that in untreated infected cells. In addition, results of FMDV infection in mouse embryonic fibroblast cells derived from gene knockout mice lacking the gene for RNase L−/− or PKR−/− or both indicated an important role for PKR in the inhibition of FMDV replication.


Journal of Virology | 2007

Enhanced Antiviral Activity against Foot-and-Mouth Disease Virus by a Combination of Type I and II Porcine Interferons

Mauro Pires Moraes; Teresa de los Santos; Marla Koster; Traci Turecek; He Wang; Vladimir G. Andreyev; Marvin J. Grubman

ABSTRACT Previously, we showed that type I interferon (alpha/beta interferon [IFN-α/β]) can inhibit foot-and-mouth disease virus (FMDV) replication in cell culture, and swine inoculated with 109 PFU of human adenovirus type 5 expressing porcine IFN-α (Ad5-pIFN-α) were protected when challenged 1 day later. In this study, we found that type II pIFN (pIFN-γ) also has antiviral activity against FMDV in cell culture and that, in combination with pIFN-α, it has a synergistic antiviral effect. We also observed that while each IFN alone induced a number of IFN-stimulated genes (ISGs), the combination resulted in a synergistic induction of some ISGs. To extend these studies to susceptible animals, we inoculated groups of swine with a control Ad5, 108 PFU of Ad5-pIFN-α, low- or high-dose Ad5-pIFN-γ, or a combination of Ad5-pIFN-α and low- or high-dose Ad5-pIFN-γ and challenged all groups with FMDV 1 day later. The control group and the groups inoculated with either Ad5-pIFN-α or a low dose of Ad5-pIFN-γ developed clinical disease and viremia. However, the group that received the combination of both Ad5-IFNs with the low dose of Ad5-pIFN-γ was completely protected from challenge and had no viremia. Similarly the groups inoculated with the combination of Ad5s with the higher dose of Ad5-pIFN-γ or with only high-dose Ad5-pIFN-γ were protected. The protected animals did not develop antibodies against viral nonstructural (NS) proteins, while all infected animals were NS protein seropositive. No antiviral activity or significant levels of IFNs were detected in the protected groups, but there was an induction of some ISGs. The results indicate that the combination of type I and II IFNs act synergistically to inhibit FMDV replication in vitro and in vivo.


Journal of Virology | 2009

A Conserved Domain in the Leader Proteinase of Foot-and-Mouth Disease Virus Is Required for Proper Subcellular Localization and Function

Teresa de los Santos; Fayna Diaz-San Segundo; James Zhu; Marla Koster; Camila C. A. Dias; Marvin J. Grubman

ABSTRACT The leader proteinase (Lpro) of foot-and-mouth disease virus (FMDV) is involved in antagonizing the innate immune response by blocking the expression of interferon (IFN) and by reducing the immediate-early induction of IFN-β mRNA and IFN-stimulated genes. In addition to its role in shutting off cap-dependent host mRNA translation, Lpro is associated with the degradation of the p65/RelA subunit of nuclear factor κB (NF-κB). Bioinformatics analysis suggests that Lpro contains a SAP (for SAF-A/B, Acinus, and PIAS) domain, a protein structure associated in some cases with the nuclear retention of molecules involved in transcriptional control. We have introduced a single or a double mutation in conserved amino acid residues contained within this domain of Lpro. Although three stable mutant viruses were obtained, only the double mutant displayed an attenuated phenotype in cell culture. Indirect immunofluorescence analysis showed that Lpro subcellular distribution is altered in cells infected with the double mutant virus. Interestingly, nuclear p65/RelA staining disappeared from wild-type (WT) FMDV-infected cells but not from double mutant virus-infected cells. Consistent with these results, NF-κB-dependent transcription was not inhibited in cells infected with double mutant virus in contrast to cells infected with WT virus. However, degradation of the translation initiation factor eIF-4G was very similar for both the WT and the double mutant viruses. Since Lpro catalytic activity was demonstrated to be a requirement for p65/RelA degradation, our results indicate that mutation of the SAP domain reveals a novel separation-of-function activity for FMDV Lpro.


Virology | 2011

Antiviral Activity of Bovine Type III Interferon Against Foot-and-Mouth Disease Virus

Fayna Diaz-San Segundo; Marcelo Weiss; Eva Perez-Martin; Marla Koster; James Zhu; Marvin J. Grubman; Teresa de los Santos

Foot-and-mouth disease (FMD) is one of the most serious threats to the livestock industry. Despite the availability of a vaccine, recent outbreaks in disease-free countries have demonstrated that development of novel FMD control strategies is imperative. Here we report the identification and characterization of bovine (bo) interferon lambda 3 (IFN-λ3), a member of the type III IFN family. Expression of boIFN-λ3 using a replication-defective human adenovirus type 5 vector (Ad5-boIFN-λ3) yielded a glycosylated secreted protein with antiviral activity against FMD virus (FMDV) and vesicular stomatitis virus in bovine cell culture. Inoculation of cattle with Ad5-boIFN-λ3 induced systemic antiviral activity and up-regulation of IFN stimulated gene expression in multiple tissues susceptible to FMDV infection. Our results demonstrate that the type III IFN family is conserved in bovines and boIFN-λ3 has potential for further development as a biotherapeutic candidate to inhibit FMDV or other viruses in cattle.


Journal of Interferon and Cytokine Research | 2003

Adenovirus-Mediated Type I Interferon Expression Delays and Reduces Disease Signs in Cattle Challenged with Foot-and-Mouth Disease Virus

Qiaohua Wu; Mário Celso Sperotto Brum; Luizinho Caron; Marla Koster; Marvin J. Grubman

Foot-and-mouth disease (FMD) is an economically important disease of livestock. Eliminating FMD outbreaks in previously disease-free countries often relies on restriction of animal movement and massive slaughter of infected and in-contact susceptible animals. To develop a more effective and humane FMD control strategy, we explored the possibility of using type I interferon (IFN-alpha/beta) as a novel anti-FMD agent. We have demonstrated previously that swine inoculated with replication-defective human adenovirus type 5 (Ad5) vector expressing porcine IFN-alpha (Ad5-PoIFN-alpha) were completely protected from FMD virus (FMDV) challenge. To extend this approach to bovines, we constructed Ad5 vectors that express bovine IFN-alpha or IFN-beta (Ad5-BoIFN-alpha and Ad5-BoIFN-beta). Cells infected with these viruses produced high levels of biologically active BoIFN-alpha/beta, but despite expression in vitro, no detectable IFN-induced biologic activity was found in cattle inoculated with Ad5-BoIFN-alpha. Because PoIFN-alpha inhibits FMDV replication in bovine cells, we evaluated the potential use of PoIFN-alpha against FMD in cattle. In cattle inoculated with Ad5-PoIFN-alpha, the appearance of vesicles was delayed after challenge with FMDV and disease was less severe than in control animals. One Ad5-PoIFN-alpha-inoculated animal never developed clinical disease. Similarly, although all the Ad5-PoIFN-alpha-inoculated animals developed viremia, it was delayed for 1 day as compared with the control group. These results suggest that in vivo expression of PoIFN-alpha partially protected cattle from FMD.


Vaccine | 2008

Delivery of a foot-and-mouth disease virus empty capsid subunit antigen with nonstructural protein 2B improves protection of swine

Lindomar Pena; Mauro P. Moraes; Marla Koster; Thomas G. Burrage; Juan M. Pacheco; Fayna Diaz-San Segundo; Marvin J. Grubman

To develop a more efficacious human adenovirus (Ad5)-vectored foot-and-mouth disease virus (FMDV) subunit vaccine (Ad5-A24) we have included coding regions for FMDV nonstructural proteins 2B and 2C. These proteins are involved in membrane re-arrangements resulting in the proliferation of cytoplasmic vesicles which serve as the sites of virus replication. Cells infected with a vector containing full-length 2B (Ad5-CI-A24-2B) had a significant increase in the number of cytoplasmic vesicles as compared to cells infected with the original vector or a vector containing full-length 2BC. Swine inoculated with Ad5-CI-A24-2B developed an enhanced FMDV-specific neutralizing antibody response as compared to animals inoculated with the original vector and showed no clinical signs of disease after challenge. In a second experiment animals vaccinated with Ad5-CI-A24-2B were not fully protected but had a more rapid and robust humoral response and two out of three pigs had delayed and less severe disease than animals in the other vaccinated groups. These results suggest that incorporation of the complete coding region of 2B into the vaccine enhances its potency and protective efficacy.


Journal of Virology | 2016

Synonymous Deoptimization of Foot-and-Mouth Disease Virus Causes Attenuation In Vivo while Inducing a Strong Neutralizing Antibody Response

Fayna Diaz-San Segundo; Gisselle N. Medina; Elizabeth Ramirez-Medina; Lauro Velazquez-Salinas; Marla Koster; Marvin J. Grubman; Teresa de los Santos

ABSTRACT Codon bias deoptimization has been previously used to successfully attenuate human pathogens, including poliovirus, respiratory syncytial virus, and influenza virus. We have applied a similar technology to deoptimize the capsid-coding region (P1) of foot-and-mouth disease virus (FMDV). Despite the introduction of 489 nucleotide changes (19%), synonymous deoptimization of the P1 region rendered a viable FMDV progeny. The resulting strain was stable and reached cell culture titers similar to those obtained for wild-type (WT) virus, but at reduced specific infectivity. Studies in mice showed that 100% of animals inoculated with the FMDV A12 P1 deoptimized mutant (A12-P1 deopt) survived, even when the animals were infected at doses 100 times higher than the dose required to cause death by WT virus. All mice inoculated with the A12-P1 deopt mutant developed a strong antibody response and were protected against subsequent lethal challenge with WT virus at 21 days postinoculation. Remarkably, the vaccine safety margin was at least 1,000-fold higher for A12-P1 deopt than for WT virus. Similar patterns of attenuation were observed in swine, in which animals inoculated with A12-P1 deopt virus did not develop clinical disease until doses reached 1,000 to 10,000 times the dose required to cause severe disease in 2 days with WT A12. Consistently, high levels of antibody titers were induced, even at the lowest dose tested. These results highlight the potential use of synonymous codon pair deoptimization as a strategy to safely attenuate FMDV and further develop live attenuated vaccine candidates to control such a feared livestock disease. IMPORTANCE Foot-and-mouth disease (FMD) is one of the most feared viral diseases that can affect livestock. Although this disease appeared to be contained in developed nations by the end of the last century, recent outbreaks in Europe, Japan, Taiwan, South Korea, etc., have demonstrated that infection can spread rapidly, causing devastating economic and social consequences. The Global Foot-and-Mouth Disease Research Alliance (GFRA), an international organization launched in 2003, has set as part of their five main goals the development of next-generation control measures and strategies, including improved vaccines and biotherapeutics. Our work demonstrates that newly developed codon pair bias deoptimization technologies can be applied to FMD virus to obtain attenuated strains with potential for further development as novel live attenuated vaccine candidates that may rapidly control disease without reverting to virulence.


Virology | 2017

Adenovirus-vectored foot-and-mouth disease vaccine confers early and full protection against FMDV O1 Manisa in swine

I. Fernandez-Sainz; Gisselle N. Medina; Elizabeth Ramirez-Medina; Marla Koster; Marvin J. Grubman; Teresa de los Santos

A human adenovirus (Ad5) vectored foot-and-mouth disease virus (FMDV) O1-Manisa subunit vaccine (Ad5-O1Man) was engineered to deliver FMDV O1-Manisa capsid and capsid-processing proteins. Swine inoculated with Ad5-O1Man developed an FMDV-specific humoral response as compared to animals inoculated with an empty Ad5-vector. Vaccinated animals were completely protected against homologous challenge at 7 or 21 days post-vaccination. Potency studies exhibited a PD50 of about 107 pfu/animal while a dose of 4×107pfu/animal fully protected swine against FMDV intradermal challenge. In-vitro cross-neutralization analysis distinctly predicted that swine vaccinated with Ad5-O1Man would be protected against challenge with homologous FMDV O1Man Middle East-South Asia (ME-SA) topotype and also against recent outbreak strains of Mya-98 South East Asia (SEA) lineage including O1-UK-2001 and O1-South Korea-2010. These results indicate that recombinant Ad5-O1Man is an effective, safe and cross-reacting vaccine that could potentially be used preventively and in outbreak situations, to control FMDV O Mya-98 lineage in swine.


Veterinary Microbiology | 2017

Recombinant human adenovirus-5 expressing capsid proteins of Indian vaccine strains of foot-and-mouth disease virus elicits effective antibody response in cattle

B.P. Sreenivasa; Jajati K. Mohapatra; Steven J. Pauszek; Marla Koster; V.C. Dhanya; R. P. Tamil Selvan; M. Hosamani; P. Saravanan; Suresh H. Basagoudanavar; T. de los Santos; R. Venkataramanan; Luis L. Rodriguez; Marvin J. Grubman

Recombinant adenovirus-5 vectored foot-and-mouth disease constructs (Ad5- FMD) were made for three Indian vaccine virus serotypes O, A and Asia 1. Constructs co-expressing foot-and- mouth disease virus (FMDV) capsid and viral 3C protease sequences, were evaluated for their ability to induce a neutralizing antibody response in indigenous cattle (Bos indicus). Purified Ad5-FMD viruses were inoculated in cattle as monovalent (5×109 pfu/animal) or trivalent (5×109 pfu/animal per serotype) vaccines. Animals vaccinated with monovalent Ad5-FMD vaccines were boosted 63days later with the same dose. After primary immunization, virus neutralization tests (VNT) showed seroconversion in 83, 67 and 33% of animals vaccinated with Ad5-FMD O, A and Asia 1, respectively. Booster immunization elicited seroconversion in all of the animals (100%) in the monovalent groups. When used in a trivalent form, the Ad5-FMD vaccine induced neutralizing antibodies in only 33, 50 and 16% of animals against serotypes O, A and Asia 1, respectively on primo-vaccination, and titers were significantly lower than when the same vectors were used in monovalent form. Neutralizing antibody titers differed by serotype for both Ad5-FMD monovalent and trivalent vaccines, with Asia 1 serotype inducing the lowest titers. Antibody response to Ad5 vector in immunized cattle was also assessed by VNT. It appeared that the vector immunity did not impact the recall responses to expressed FMDV antigens on booster immunization. In summary, the study suggested that the recombinant Ad5-FMD vaccine has a potential use in monovalent form, while its application in multivalent form is not currently encouraging.

Collaboration


Dive into the Marla Koster's collaboration.

Top Co-Authors

Avatar

Marvin J. Grubman

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mauro Pires Moraes

Universidade Federal de Viçosa

View shared research outputs
Top Co-Authors

Avatar

Teresa de los Santos

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Fayna Diaz-San Segundo

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Thomas G. Burrage

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gisselle N. Medina

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

James Zhu

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Lindomar Pena

United States Department of Agriculture

View shared research outputs
Researchain Logo
Decentralizing Knowledge