Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marleen Kamperman is active.

Publication


Featured researches published by Marleen Kamperman.


Science | 2008

Ordered mesoporous materials from metal nanoparticle-block copolymer self-assembly

Scott C. Warren; Lauren C. Messina; Liane Siu Slaughter; Marleen Kamperman; Qin Zhou; Sol M. Gruner; Francis J. DiSalvo; Ulrich Wiesner

The synthesis of ordered mesoporous metal composites and ordered mesoporous metals is a challenge because metals have high surface energies that favor low surface areas. We present results from the self-assembly of block copolymers with ligand-stabilized platinum nanoparticles, leading to lamellar CCM-Pt-4 and inverse hexagonal (CCM-Pt-6) hybrid mesostructures with high nanoparticle loadings. Pyrolysis of the CCM-Pt-6 hybrid produces an ordered mesoporous platinum-carbon nanocomposite with open and large pores (≥10 nanometers). Removal of the carbon leads to ordered porous platinum mesostructures. The platinum-carbon nanocomposite has very high electrical conductivity (400 siemens per centimeter) for an ordered mesoporous material fabricated from block copolymer self-assembly.


Nano Letters | 2009

A Bicontinuous Double Gyroid Hybrid Solar Cell

Edward J. W. Crossland; Marleen Kamperman; Mihaela Nedelcu; Caterina Ducati; Ulrich Wiesner; Detlef-M. Smilgies; Gilman E. S. Toombes; Marc A. Hillmyer; Sabine Ludwigs; Ullrich Steiner; Henry J. Snaith

We report the first successful application of an ordered bicontinuous gyroid semiconducting network in a hybrid bulk heterojunction solar cell. The freestanding gyroid network is fabricated by electrochemical deposition into the 10 nm wide voided channels of a self-assembled, selectively degradable block copolymer film. The highly ordered pore structure is ideal for uniform infiltration of an organic hole transporting material, and solid-state dye-sensitized solar cells only 400 nm thick exhibit up to 1.7% power conversion efficiency. This patterning technique can be readily extended to other promising heterojunction systems and is a major step toward realizing the full potential of self-assembly in the next generation of device technologies.


Nature Materials | 2012

A silica sol–gel design strategy for nanostructured metallic materials

Scott C. Warren; Matthew R. Perkins; Ashley M. Adams; Marleen Kamperman; Andrew Burns; Hitesh Arora; Erik Herz; Teeraporn Suteewong; Hiroaki Sai; Zihui Li; Jörg G. Werner; Juho Song; Ulrike Werner-Zwanziger; Josef W. Zwanziger; Michael Grätzel; Francis J. DiSalvo; Ulrich Wiesner

Batteries, fuel cells and solar cells, among many other high-current-density devices, could benefit from the precise meso- to macroscopic structure control afforded by the silica sol-gel process. The porous materials made by silica sol-gel chemistry are typically insulators, however, which has restricted their application. Here we present a simple, yet highly versatile silica sol-gel process built around a multifunctional sol-gel precursor that is derived from the following: amino acids, hydroxy acids or peptides; a silicon alkoxide; and a metal acetate. This approach allows a wide range of biological functionalities and metals--including noble metals--to be combined into a library of sol-gel materials with a high degree of control over composition and structure. We demonstrate that the sol-gel process based on these precursors is compatible with block-copolymer self-assembly, colloidal crystal templating and the Stöber process. As a result of the exceptionally high metal content, these materials can be thermally processed to make porous nanocomposites with metallic percolation networks that have an electrical conductivity of over 1,000 S cm(-1). This improves the electrical conductivity of porous silica sol-gel nanocomposites by three orders of magnitude over existing approaches, opening applications to high-current-density devices.


Nano Letters | 2009

Integrating Structure Control over Multiple Length Scales in Porous High Temperature Ceramics with Functional Platinum Nanoparticles

Marleen Kamperman; Andrew Burns; Robert Weissgraeber; Niels van Vegten; Scott C. Warren; Sol M. Gruner; Alfons Baiker; Ulrich Wiesner

High temperature ceramics with porosity on multiple length scales offer great promise in high temperature catalytic applications for their high surface area and low flow resistance in combination with thermal and chemical stability. We have developed a bottom-up approach to functional, porous, high-temperature ceramics structured on eight distinct length scales integrating functional Pt nanoparticles from the near-atomic to the macroscopic level. Structuring is achieved through a combination of micromolding and multicomponent colloidal self-assembly. The resulting template is filled with a solution containing a solvent, a block copolymer, a ceramic precursor, and a nanoparticle catalyst precursor as well as a radical initiator. Heat treatment results in three-dimensionally interconnected, high-temperature ceramic materials functionalized with well-dispersed 1-2 nm Pt catalyst nanoparticles and very high porosity.


Acta Biomaterialia | 2012

Effect of nano- and micro-roughness on adhesion of bioinspired micropatterned surfaces.

Natalia Cañas; Marleen Kamperman; Benjamin Völker; Elmar Kroner; Robert M. McMeeking; Eduard Arzt

In this work, the adhesion of biomimetic polydimethylsiloxane (PDMS) pillar arrays with mushroom-shaped tips was studied on nano- and micro-rough surfaces and compared to unpatterned controls. The adhesion strength on nano-rough surfaces invariably decreased with increasing roughness, but pillar arrays retained higher adhesion strengths than unpatterned controls in all cases. The results were analyzed with a model that focuses on the effect on adhesion of depressions in a rough surface. The model fits the data very well, suggesting that the pull-off strength for patterned PDMS is controlled by the deepest dimple-like feature on the rough surface. The lower pull-off strength for unpatterned PDMS may be explained by the initiation of the pull-off process at the edge of the probe, where significant stress concentrates. With micro-rough surfaces, pillar arrays showed maximum adhesion with a certain intermediate roughness, while unpatterned controls did not show any measurable adhesion. This effect can be explained by the inability of micropatterned surfaces to conform to very fine and very large surface asperities.


Journal of the American Chemical Society | 2012

Direct Synthesis of Inverse Hexagonally Ordered Diblock Copolymer/ Polyoxometalate Nanocomposite Films

Thomas Lunkenbein; Marleen Kamperman; Zihui Li; Carina Bojer; Markus Drechsler; Stephan Förster; Ulrich Wiesner; Axel H. E. Müller; Josef Breu

Nanostructured inverse hexagonal polyoxometalate composite films were cast directly from solution using poly(butadiene-block-2-(dimethylamino)ethyl methacrylate) (PB-b-PDMAEMA) diblock copolymers as structure directing agents for phosphomolybdic acid (H(3)[PMo(12)O(40)], H(3)PMo). H(3)PMo units are selectively incorporated into the PDMAEMA domains due to electrostatic interactions between protonated PDMAEMA and PMo(3-) anions. Long solvophilic PB chains stabilized the PDMAEMA/H(3)PMo aggregates in solution and reliably prevented macrophase separation. The choice of solvent is crucial. It appears that all three components, both blocks of the diblock copolymer as well as H(3)PMo, have to be soluble in the same solvent which turned out to be tetrahydrofuran, THF. Evaporation induced self-assembly resulted in highly ordered inverse hexagonal nanocomposite films as observed from transmission electron microscopy and small-angle X-ray scattering. This one-pot synthesis may represent a generally applicable strategy for integrating polyoxometalates into functional architectures and devices.


Acta Biomaterialia | 2014

Genetically engineered silk–collagen-like copolymer for biomedical applications: Production, characterization and evaluation of cellular response

Małgorzata K. Włodarczyk-Biegun; Marc Willem Theodoor Werten; de F.A. Wolf; van den J.J.J.P. Beucken; Sander C. G. Leeuwenburgh; Marleen Kamperman; M.A. Cohen Stuart

Genetically engineered protein polymers (GEPP) are a class of multifunctional materials with precisely controlled molecular structure and property profile. Representing a promising alternative for currently used materials in biomedical applications, GEPP offer multiple benefits over natural and chemically synthesized polymers. However, producing them in sufficient quantities for preclinical research remains challenging. Here, we present results from an in vitro cellular response study of a recombinant protein polymer that is soluble at low pH but self-organizes into supramolecular fibers and physical hydrogels at neutral pH. It has a triblock structure denoted as C2S(H)48C2, which consists of hydrophilic collagen-inspired and histidine-rich silk-inspired blocks. The protein was successfully produced by the yeast Pichia pastoris in laboratory-scale bioreactors, and it was purified by selective precipitation. This efficient and inexpensive production method provided material of sufficient quantities, purity and sterility for cell culture study. Rheology and erosion studies showed that it forms hydrogels exhibiting long-term stability, self-healing behavior and tunable mechanical properties. Primary rat bone marrow cells cultured in direct contact with these hydrogels remained fully viable; however, proliferation and mineralization were relatively low compared to collagen hydrogel controls, probably because of the absence of cell-adhesive motifs. As biofunctional factors can be readily incorporated to improve material performance, our approach provides a promising route towards biomedical applications.


Journal of Materials Chemistry | 2012

Switchable adhesion by chemical functionality and topography

Marleen Kamperman; Alla Synytska

Progress in adhesion technology over the last few decades has led to widespread replacement of mechanical fasteners with adhesive bonds. Despite the advances, it remains challenging to produce materials that are sticky on demand. In this feature article we highlight recent efforts to develop reversibly switchable adhesives, that exhibit the ability to trigger adhesion in response to an environmental change – for example, pH, solvent, temperature, mechanics, and electro/magnetic field. We review two initially separate design principles to induce switchable adhesion: (1) chemical functionality and (2) topography. Combining both approaches may lead to novel hierarchical adhesives with interesting property profiles.


Macromolecular Rapid Communications | 2010

Block Copolymer Directed Nanoporous Metal Thin Films

Hitesh Arora; Zihui Li; Hiroaki Sai; Marleen Kamperman; Scott C. Warren; Ulrich Wiesner

Porous metal thin films have high potential for use in applications such as catalysis, electrical contacts, plasmonics, as well as energy storage and conversion. Structuring metal thin films on the nanoscale to generate high surface areas poses an interesting challenge as metals have high surface energy. In this communication, we demonstrate direct access to nanostructured metal nanoparticle hybrid thin films with high nanoparticle loadings through spin coating of a mixture of block copolymer and ligand stabilized platinum and palladium nanoparticles. Plasma cleaning to remove the organics results in a conductive metal thin film. We expect that the methods described here can be generalized to other metals, mixtures of metal nanoparticles, and intermetallics.


Polymer Chemistry | 2015

The effect of molecular composition and crosslinking on adhesion of a bio-inspired adhesive

Juan Yang; Jaap Keijsers; Maarten van Heek; Anthonie Stuiver; Martien A. Cohen Stuart; Marleen Kamperman

In this article, catechol-functionalized polymers are synthesized by free radical polymerization of dopamine methacrylamide (DMA) and 2-methoxyethyl methacrylate (MEA) at 60 °C in DMF. By varying the DMA content in the polymer, it is found that during free radical polymerization, the catechol groups in DMA react with the propagating radicals, resulting in the formation of a crosslinked structure. We systematically study the effect of DMA content and crosslinking on the adhesion properties of the polymers. Under both dry and wet conditions, maximum adhesion is obtained for a polymer composed of 5 mol% DMA. This polymer exhibits an optimum balance between the catechol content to strengthen the interface, compliance to ensure good contact formation and cohesive strength to resist separation. An increase in the crosslinking degree of the polymer resulted in reduced dry adhesion.

Collaboration


Dive into the Marleen Kamperman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martien A. Cohen Stuart

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Juan Yang

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Małgorzata K. Włodarczyk-Biegun

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aldrik H. Velders

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Marc W. T. Werten

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Merve Mocan

Wageningen University and Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge