Marlen Knobloch
University of Zurich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marlen Knobloch.
Nature | 2002
David Genoux; Ursula Haditsch; Marlen Knobloch; Aubin Michalon; Daniel R. Storm; Isabelle M. Mansuy
Repetition in learning is a prerequisite for the formation of accurate and long-lasting memory. Practice is most effective when widely distributed over time, rather than when closely spaced or massed. But even after efficient learning, most memories dissipate with time unless frequently used. The molecular mechanisms of these time-dependent constraints on learning and memory are unknown. Here we show that protein phosphatase 1 (PP1) determines the efficacy of learning and memory by limiting acquisition and favouring memory decline. When PP1 is genetically inhibited during learning, short intervals between training episodes are sufficient for optimal performance. The enhanced learning correlates with increased phosphorylation of cyclic AMP-dependent response element binding (CREB) protein, of Ca2+/calmodulin-dependent protein kinase II (CaMKII) and of the GluR1 subunit of the AMPA receptor; it also correlates with CREB-dependent gene expression that, in control mice, occurs only with widely distributed training. Inhibition of PP1 prolongs memory when induced after learning, suggesting that PP1 also promotes forgetting. This property may account for ageing-related cognitive decay, as old mutant animals had preserved memory. Our findings emphasize the physiological importance of PP1 as a suppressor of learning and memory, and as a potential mediator of cognitive decline during ageing.
Molecular Neurobiology | 2008
Marlen Knobloch; Isabelle M. Mansuy
Dendritic spines are tiny protrusions along dendrites, which constitute major postsynaptic sites for excitatory synaptic transmission. These spines are highly motile and can undergo remodeling even in the adult nervous system. Spine remodeling and the formation of new synapses are activity-dependent processes that provide a basis for memory formation. A loss or alteration of these structures has been described in patients with neurodegenerative disorders such as Alzheimer’s disease (AD), and in mouse models for these disorders. Such alteration is thought to be responsible for cognitive deficits long before or even in the absence of neuronal loss, but the underlying mechanisms are poorly understood. This review will describe recent findings and discoveries on the loss or alteration of dendritic spines induced by the amyloid β (Aβ) peptide in the context of AD.
Neurobiology of Aging | 2007
Marlen Knobloch; Uwe Konietzko; Danielle C. Krebs; Roger M. Nitsch
The brain pathology of Alzheimer’s disease is characterized by abnormally aggregated A in extracellular -amyloid plaques and along blood vessel walls, but the relation to intracellular A remains unclear. To address the role of intracellular A deposition in vivo ,w e expressed human APP with the combined Swedish and Arctic mutations in mice (arcA mice). Intracellular punctate deposits of A occurred concomitantly with robust cognitive impairments at the age of 6 months before the onset of -amyloid plaque formation and cerebral amyloid angiopathy. -Amyloid plaques from arcA mice had distinct dense-core morphologies with blood vessels appearing as seeding origins, suggesting reduced clearance of A across blood vessels in arcA mice. The co-incidence of intracellular A deposits with behavioral deficits support an early role of intracellular A in the pathophysiological cascade leading to -amyloid formation and functional impairment.
Nature | 2012
Marlen Knobloch; Simon M.G. Braun; Luis Zurkirchen; Carolin von Schoultz; Nicola Zamboni; Marcos J. Araúzo-Bravo; Werner J. Kovacs; Oezlem Karalay; Ueli Suter; Raquel A.C. Machado; Marta Roccio; Matthias P. Lutolf; Clay F. Semenkovich; Sebastian Jessberger
Mechanisms controlling the proliferative activity of neural stem and progenitor cells (NSPCs) have a pivotal role to ensure life-long neurogenesis in the mammalian brain. How metabolic programs are coupled with NSPC activity remains unknown. Here we show that fatty acid synthase (Fasn), the key enzyme of de novo lipogenesis, is highly active in adult NSPCs and that conditional deletion of Fasn in mouse NSPCs impairs adult neurogenesis. The rate of de novo lipid synthesis and subsequent proliferation of NSPCs is regulated by Spot14, a gene previously implicated in lipid metabolism, that we found to be selectively expressed in low proliferating adult NSPCs. Spot14 reduces the availability of malonyl-CoA, which is an essential substrate for Fasn to fuel lipogenesis. Thus, we identify here a functional coupling between the regulation of lipid metabolism and adult NSPC proliferation.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Özlem Karalay; Kathrin Doberauer; Krishna C. Vadodaria; Marlen Knobloch; Lucia Berti; Amaya Miquelajauregui; Manuela Schwark; Ravi Jagasia; Makoto M. Taketo; Victor Tarabykin; D. Chichung Lie; Sebastian Jessberger
Neural stem cells (NSCs) generate new granule cells throughout life in the mammalian hippocampus. Canonical Wnt signaling regulates the differentiation of NSCs towards the neuronal lineage. Here we identified the prospero-related homeodomain transcription factor Prox1 as a target of β-catenin–TCF/LEF signaling in vitro and in vivo. Prox1 overexpression enhanced neuronal differentiation whereas shRNA-mediated knockdown of Prox1 impaired the generation of neurons in vitro and within the hippocampal niche. In contrast, Prox1 was not required for survival of adult-generated granule cells after they had matured, suggesting a role for Prox1 in initial granule cell differentiation but not in the maintenance of mature granule cells. The data presented here characterize a molecular pathway from Wnt signaling to a transcriptional target leading to granule cell differentiation within the adult brain and identify a stage-specific function for Prox1 in the process of adult neurogenesis.
The Journal of Neuroscience | 2012
Oliver Bracko; Tatjana Singer; Stefan Aigner; Marlen Knobloch; Beate Winner; Jasodhara Ray; Gregory D. Clemenson; Hoonkyo Suh; Sebastien Couillard-Despres; Ludwig Aigner; Fred H. Gage; Sebastian Jessberger
Neural stem cells (NSCs) generate neurons throughout life in the hippocampal dentate gyrus (DG). How gene expression signatures differ among NSCs and immature neurons remains largely unknown. We isolated NSCs and their progeny in the adult DG using transgenic mice expressing a GFP reporter under the control of the Sox2 promoter (labeling NSCs) and transgenic mice expressing a DsRed reporter under the control of the doublecortin (DCX) promoter (labeling immature neurons). Transcriptome analyses revealed distinct gene expression profiles between NSCs and immature neurons. Among the genes that were expressed at significantly higher levels in DG NSCs than in immature neurons was the growth factor insulin-like growth factor 2 (IGF2). We show that IGF2 selectively controls proliferation of DG NSCs in vitro and in vivo through AKT-dependent signaling. Thus, by gene expression profiling of NSCs and their progeny, we have identified IGF2 as a novel regulator of adult neurogenesis.
The Journal of Neuroscience | 2007
Marlen Knobloch; Mélissa Farinelli; Uwe Konietzko; Roger M. Nitsch; Isabelle M. Mansuy
Amyloid β (Aβ) oligomers are derived from proteolytic cleavage of amyloid precursor protein (APP) and can impair memory and hippocampal long-term potentiation (LTP) in vivo and in vitro. They are recognized as the primary neurotoxic agents in Alzheimers disease. The mechanisms underlying such toxicity on synaptic functions are complex and not fully understood. Here, we provide the first evidence that these mechanisms involve protein phosphatase 1 (PP1). Using a novel transgenic mouse model expressing human APP with the Swedish and Arctic mutations that render Aβ more prone to form oligomers (arcAβ mice), we show that the LTP impairment induced by Aβ oligomers can be fully reversed by PP1 inhibition in vitro. We further demonstrate that the genetic inhibition of endogenous PP1 in vivo confers resistance to Aβ oligomer-mediated toxicity and preserves LTP. Overall, these results reveal that PP1 is a key player in the mechanisms of AD pathology.
Development | 2013
Marta Roccio; Daniel Schmitter; Marlen Knobloch; Yuya Okawa; Daniel Sage; Matthias P. Lutolf
Stem cell self-renewal, commitment and reprogramming rely on a poorly understood coordination of cell cycle progression and execution of cell fate choices. Using existing experimental paradigms, it has not been possible to probe this relationship systematically in live stem cells in vitro or in vivo. Alterations in stem cell cycle kinetics probably occur long before changes in phenotypic markers are apparent and could be used as predictive parameters to reveal changes in stem cell fate. To explore this intriguing concept, we developed a single-cell tracking approach that enables automatic detection of cell cycle phases in live (stem) cells expressing fluorescent ubiquitylation-based cell-cycle indicator (FUCCI) probes. Using this tool, we have identified distinctive changes in lengths and fluorescence intensities of G1 (red fluorescence) and S/G2-M (green) that are associated with self-renewal and differentiation of single murine neural stem/progenitor cells (NSCs) and embryonic stem cells (ESCs). We further exploited these distinctive features using fluorescence-activated cell sorting to select for desired stem cell fates in two challenging cell culture settings. First, as G1 length was found to nearly double during NSC differentiation, resulting in progressively increasing red fluorescence intensity, we successfully purified stem cells from heterogeneous cell populations by their lower fluorescence. Second, as ESCs are almost exclusively marked by the green (S/G2-M) FUCCI probe due to their very short G1, we substantially augmented the proportion of reprogramming cells by sorting green cells early on during reprogramming from a NSC to an induced pluripotent stem cell state. Taken together, our studies begin to shed light on the crucial relationship between cell cycle progression and fate choice, and we are convinced that the presented approach can be exploited to predict and manipulate cell fate in a wealth of other mammalian cell systems.
Nature | 2017
Brian W. Wong; Xingwu Wang; Annalisa Zecchin; Bernard Thienpont; Joanna Kalucka; Melissa García-Caballero; Rindert Missiaen; Hongling Huang; Ulrike Bruning; Silvia Blacher; Stefan Vinckier; Jermaine Goveia; Marlen Knobloch; Hui Zhao; Cathrin Dierkes; Chenyan Shi; René Hägerling; Veronica Moral-Darde; Sabine Wyns; Martin Lippens; Sebastian Jessberger; Sarah-Maria Fendt; Aernout Luttun; Agnès Noël; Friedemann Kiefer; Bart Ghesquière; Lieve Moons; Luc Schoonjans; Mieke Dewerchin; Guy Eelen
Lymphatic vessels are lined by lymphatic endothelial cells (LECs), and are critical for health. However, the role of metabolism in lymphatic development has not yet been elucidated. Here we report that in transgenic mouse models, LEC-specific loss of CPT1A, a rate-controlling enzyme in fatty acid β-oxidation, impairs lymphatic development. LECs use fatty acid β-oxidation to proliferate and for epigenetic regulation of lymphatic marker expression during LEC differentiation. Mechanistically, the transcription factor PROX1 upregulates CPT1A expression, which increases acetyl coenzyme A production dependent on fatty acid β-oxidation. Acetyl coenzyme A is used by the histone acetyltransferase p300 to acetylate histones at lymphangiogenic genes. PROX1–p300 interaction facilitates preferential histone acetylation at PROX1-target genes. Through this metabolism-dependent mechanism, PROX1 mediates epigenetic changes that promote lymphangiogenesis. Notably, blockade of CPT1 enzymes inhibits injury-induced lymphangiogenesis, and replenishing acetyl coenzyme A by supplementing acetate rescues this process in vivo.
Neurodegenerative Diseases | 2007
Lawrence Rajendran; Marlen Knobloch; Kathrin D. Geiger; Stephanie Dienel; Roger M. Nitsch; Kai Simons; Uwe Konietzko
Extracellular accumulation of Aβ in β-amyloid plaques is thought to be associated with the neurodegeneration observed in Alzheimer’s disease (AD) patients, although a lack of correlation with cognitive decline raised doubts on this hypothesis. In different transgenic mouse models Aβ accumulates inside the cells and mice develop behavioral deficits well before visible extracellular β-amyloid accumulation. Here we show that intracellular Aβ accumulates in flotillin-1 positive endocytic vesicles. We also demonstrate that flotillin-1 is not only associated with intracellular Aβ in transgenic mice but also with extracellular β-amyloid plaques in AD patient brain sections.