Marlen Priegnitz
Helmholtz-Zentrum Dresden-Rossendorf
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marlen Priegnitz.
Physics in Medicine and Biology | 2011
Georgy Shakirin; Henning Braess; F. Fiedler; Daniela Kunath; Kristin Laube; Katia Parodi; Marlen Priegnitz; W. Enghardt
An independent assessment of the dose delivery in ion therapy can be performed using positron emission tomography (PET). For that a distribution of positron emitters which appear as the result of interaction between ions of the therapeutic beam and the irradiated tissue is measured during or after the irradiation. Three concepts for PET monitoring implemented in various therapy facilities are considered in this paper. The in-beam PET concept relies on the PET measurement performed simultaneously to the irradiation by means of a PET scanner which is completely integrated into the irradiation site. The in-room PET concept allows measurement immediately after irradiation by a standalone PET scanner which is installed very close to the irradiation site. In the off-line PET scenario the measurement is performed by means of a standalone PET/CT scanner 10-30 min after the irradiation. These three concepts were evaluated according to image quality criteria, integration costs, and their influence onto the workflow of radiotherapy. In-beam PET showed the best performance. However, the integration costs were estimated as very high for this modality. Moreover, the performance of in-beam PET depends heavily on type and duty cycle of the accelerator. The in-room PET is proposed for planned therapy facilities as a good compromise between the quality of measured data and integration efforts. For facilities which are close to the nuclear medicine departments off-line PET can be suggested under several circumstances.
Radiotherapy and Oncology | 2016
Christian Richter; Guntram Pausch; Steffen Barczyk; Marlen Priegnitz; Isabell Keitz; Julia Thiele; J. Smeets; François Vander Stappen; L. Bombelli; C. Fiorini; L. Hotoiu; I. Perali; D. Prieels; W. Enghardt; Michael Baumann
BACKGROUND AND PURPOSE To improve precision of particle therapy, in vivo range verification is highly desirable. Methods based on prompt gamma rays emitted during treatment seem promising but have not yet been applied clinically. Here we report on the worldwide first clinical application of prompt gamma imaging (PGI) based range verification. MATERIAL AND METHODS A prototype of a knife-edge shaped slit camera was used to measure the prompt gamma ray depth distribution during a proton treatment of a head and neck tumor for seven consecutive fractions. Inter-fractional variations of the prompt gamma profile were evaluated. For three fractions, in-room control CTs were acquired and evaluated for dose relevant changes. RESULTS The measurement of PGI profiles during proton treatment was successful. Based on the PGI information, inter-fractional global range variations were in the range of ±2 mm for all evaluated fractions. This is in agreement with the control CT evaluation showing negligible range variations of about 1.5mm. CONCLUSIONS For the first time, range verification based on prompt gamma imaging was applied for a clinical proton treatment. With the translation from basic physics experiments into clinical operation, the potential to improve the precision of particle therapy with this technique has increased considerably.
Physics in Medicine and Biology | 2015
F. Hueso-Gonzalez; W. Enghardt; F. Fiedler; C. Golnik; Guillaume Janssens; J. Petzoldt; D. Prieels; Marlen Priegnitz; K. E. Romer; J. Smeets; François Vander Stappen; A. Wagner; Guntram Pausch
Ion beam therapy promises enhanced tumour coverage compared to conventional radiotherapy, but particle range uncertainties significantly blunt the achievable precision. Experimental tools for range verification in real-time are not yet available in clinical routine. The prompt gamma ray timing method has been recently proposed as an alternative to collimated imaging systems. The detection times of prompt gamma rays encode essential information about the depth-dose profile thanks to the measurable transit time of ions through matter. In a collaboration between OncoRay, Helmholtz-Zentrum Dresden-Rossendorf and IBA, the first test at a clinical proton accelerator (Westdeutsches Protonentherapiezentrum Essen, Germany) with several detectors and phantoms is performed. The robustness of the method against background and stability of the beam bunch time profile is explored, and the bunch time spread is characterized for different proton energies. For a beam spot with a hundred million protons and a single detector, range differences of 5 mm in defined heterogeneous targets are identified by numerical comparison of the spectrum shape. For higher statistics, range shifts down to 2 mm are detectable. A proton bunch monitor, higher detector throughput and quantitative range retrieval are the upcoming steps towards a clinically applicable prototype. In conclusion, the experimental results highlight the prospects of this straightforward verification method at a clinical pencil beam and settle this novel approach as a promising alternative in the field of in vivo dosimetry.
Physics in Medicine and Biology | 2015
Marlen Priegnitz; Stephan Helmbrecht; Guillaume Janssens; I. Perali; J. Smeets; F Vander Stappen; Edmond Sterpin; F. Fiedler
Proton and ion beam therapies become increasingly relevant in radiation therapy. To fully exploit the potential of this irradiation technique and to achieve maximum target volume conformality, the verification of particle ranges is highly desirable. Many research activities focus on the measurement of the spatial distributions of prompt gamma rays emitted during irradiation. A passively collimating knife-edge slit camera is a promising option to perform such measurements. In former publications, the feasibility of accurate detection of proton range shifts in homogeneous targets could be shown with such a camera. We present slit camera measurements of prompt gamma depth profiles in inhomogeneous targets. From real treatment plans and their underlying CTs, representative beam paths are selected and assembled as one-dimensional inhomogeneous targets built from tissue equivalent materials. These phantoms have been irradiated with monoenergetic proton pencil beams. The accuracy of range deviation estimation as well as the detectability of range shifts is investigated in different scenarios. In most cases, range deviations can be detected within less than 2 mm. In close vicinity to low-density regions, range detection is challenging. In particular, a minimum beam penetration depth of 7 mm beyond a cavity is required for reliable detection of a cavity filling with the present setup. Dedicated data post-processing methods may be capable of overcoming this limitation.
Physics in Medicine and Biology | 2008
Marlen Priegnitz; D Möckel; Katia Parodi; Florian Sommerer; F. Fiedler; W. Enghardt
At present positron emission tomography (PET) is the only feasible method of an in situ and non-invasive monitoring of patient irradiation with ions. At the experimental carbon ion treatment facility of the Gesellschaft für Schwerionenforschung (GSI) Darmstadt an in-beam PET scanner has been integrated into the treatment site and lead to a considerable quality improvement of the therapy. Since ions other than carbon are expected to come into operation in future patient treatment facilities, it is highly desirable to extend in-beam PET also to other therapeutic relevant ions, e.g. (7)Li. Therefore, by means of the in-beam PET scanner at GSI the beta(+)-activity induced by (7)Li(3+) ions has been investigated for the first time. Targets of PMMA, water, graphite and polyethylene were irradiated with monoenergetic, pencil-like beams of (7)Li(3+) with energies between 129.1 A MeV and 205.3 A MeV and intensities ranging from 3.0 x 10(7) to 1.9 x 10(8) ions s(-1). This paper presents the measured beta(+)-activity profiles as well as depth dependent thick target yields which have been deduced from the experimental data. The beta(+)-activity induced by (7)Li ions was found to be a factor of 1.76 higher than the one induced by (12)C ions at the same physical dose and particle range.
Medical Physics | 2013
Stephan Helmbrecht; W. Enghardt; Katia Parodi; Bernd Didinger; Jürgen Debus; Daniela Kunath; Marlen Priegnitz; F. Fiedler
PURPOSE Particle Therapy Positron Emission Tomography (PT-PET) is a suitable method for verification of therapeutic dose delivery by measurements of irradiation-induced β(+)-activity. Due to metabolic processes in living tissue β(+)-emitters can be removed from the place of generation. This washout is a limiting factor for image quality. The purpose of this study is to investigate whether a washout model obtained by animal experiments is applicable to patient data. METHODS A model for the washout has been developed by Mizuno et al. [Phys. Med. Biol. 48(15), 2269-2281 (2003)] and Tomitani et al. [Phys. Med. Biol. 48(7), 875-889 (2003)]. It is based upon measurements in a rabbit in living and dead conditions. This model was modified and applied to PET data acquired during the experimental therapy project at GSI Helmholtzzentrum für Schwerionenforschung Darmstadt, Germany. Three components are expected: A fast one with a half life of 2 s, a medium one in the range of 2-3 min, and a slow component of the order of 2-3 h. Ten patients were selected randomly for investigation of the fast component. To analyze the other two components, 12 one-of-a-kind measurements from a single volunteer patient are available. RESULTS A fast washout on the time scale of a few seconds was not observed in the patient data. The medium processes showed a mean half life of 155.7 ± 4.6 s. This is in the expected range. Fractions of the activity not influenced by the washout were found. CONCLUSIONS On the time scale of an in-beam or in-room measurement only the medium-time washout processes play a remarkable role. A slow component may be neglected if the measurements do not exceed 20 min after the end of the irradiation. The fast component is not observed due to the low relative blood filled volume in the brain.
Physics in Medicine and Biology | 2015
Edmond Sterpin; Guillaume Janssens; J. Smeets; François Vander Stappen; Damian Prieels; Marlen Priegnitz; I. Perali; Stefaan Vynckier
A prompt gamma (PG) slit camera prototype recently demonstrated that Bragg Peak position in a clinical proton scanned beam could be measured with 1-2 mm accuracy by comparing an expected PG detection profile to a measured one. The computation of the expected PG detection profile in the context of a clinical framework is challenging but must be solved before clinical implementation. Obviously, Monte Carlo methods (MC) can simulate the expected PG profile but at prohibitively long calculation times. We implemented a much faster method that is based on analytical processing of precomputed MC data that would allow practical evaluation of this range monitoring approach in clinical conditions. Reference PG emission profiles were generated with MC simulations (PENH) in targets consisting of either (12)C, (14)N, (16)O, (31)P or (40)Ca, with 10% of (1)H. In a given geometry, the local PG emission can then be derived by adding the contribution of each element, according to the local energy of the proton obtained by continuous slowing down approximation and the local composition. The actual incident spot size is taken into account using an optical model fitted to measurements and by super sampling the spot with several rays (up to 113). PG transport in the patient/camera geometries and the detector response are modelled by convolving the PG production profile with a transfer function. The latter is interpolated from a database of transfer functions fitted to MC data (PENELOPE) generated for a photon source in a cylindrical phantom with various radiuses and a camera placed at various positions. As a benchmark, the analytical model was compared to MC and experiments in homogeneous and heterogeneous phantoms. Comparisons with MC were also performed in a thoracic CT. For all cases, the analytical model reproduced the prediction of the position of the Bragg peak computed with MC within 1 mm for the camera in nominal configuration. When compared to measurements, the shape of the profiles was well reproduced and agreement for the estimation of the position of the Bragg peak was within 2.7 mm on average (1.4 mm standard deviation). On a non-optimized MATLAB code, computation time with the analytical model is between 0.3 to 10 s depending on the number of rays simulated per spot. The analytical model can be further used to determine which spots are the best candidates to evaluate the range in clinical conditions and eventually correct for over- and under-shoots depending on the acquired PG profiles.
Physics in Medicine and Biology | 2013
Kristin Stützer; Christoph Bert; W. Enghardt; Stephan Helmbrecht; Katia Parodi; Marlen Priegnitz; N Saito; F. Fiedler
In-beam positron emission tomography (PET) has been proven to be a reliable technique in ion beam radiotherapy for the in situ and non-invasive evaluation of the correct dose deposition in static tumour entities. In the presence of intra-fractional target motion an appropriate time-resolved (four-dimensional, 4D) reconstruction algorithm has to be used to avoid reconstructed activity distributions suffering from motion-related blurring artefacts and to allow for a dedicated dose monitoring. Four-dimensional reconstruction algorithms from diagnostic PET imaging that can properly handle the typically low counting statistics of in-beam PET data have been adapted and optimized for the characteristics of the double-head PET scanner BASTEI installed at GSI Helmholtzzentrum Darmstadt, Germany (GSI). Systematic investigations with moving radioactive sources demonstrate the more effective reduction of motion artefacts by applying a 4D maximum likelihood expectation maximization (MLEM) algorithm instead of the retrospective co-registration of phasewise reconstructed quasi-static activity distributions. Further 4D MLEM results are presented from in-beam PET measurements of irradiated moving phantoms which verify the accessibility of relevant parameters for the dose monitoring of intra-fractionally moving targets. From in-beam PET listmode data sets acquired together with a motion surrogate signal, valuable images can be generated by the 4D MLEM reconstruction for different motion patterns and motion-compensated beam delivery techniques.
IEEE Transactions on Nuclear Science | 2012
Marlen Priegnitz; F. Fiedler; Daniela Kunath; Kristin Laube; W. Enghardt
In-beam positron emission tomography (PET) is a valuable method for a beam-delivery independent dose monitoring in radiation therapy with ion beams. Up to now, its clinical feasibility has been demonstrated for patient irradiation with carbon ions. From radiobiological point of view it is highly desirable to perform tumor irradiation also with other light ions. To extend the application of in-beam PET also to these ions, extensive knowledge about positron emitter production via nuclear fragmentation reactions during ion irradiation is necessary. To model the positron emitter production correctly, cross sections for all possible nuclear reactions occurring in the tissue during irradiation and leading to positron emitters are required. Since these cross sections are available only for a few reaction channels in the required energy range, a novel approach for estimating the positron emitter production from experimental data is introduced. The prediction of positron emitter distributions is based on depth dependent thick target yields, which are derived by linear superposition of measured yields in water, graphite and polyethylene as reference materials. Results on the prediction of positron emitter distributions in polymethyl methacrylate (PMMA) as well as inhomogeneous targets induced by lithium and carbon irradiation are presented. By comparison with data deduced from experiments, it is shown that a rather accurate prediction of positron emitter distribution is feasible using this method.
Physics in Medicine and Biology | 2016
Marlen Priegnitz; Steffen Barczyk; L. Nenoff; Christian Golnik; I. Keitz; T. Werner; S. Mein; J. Smeets; F Vander Stappen; Guillaume Janssens; L. Hotoiu; F. Fiedler; D. Prieels; W. Enghardt; Guntram Pausch; Christian Richter
Prompt γ-ray imaging with a knife-edge shaped slit camera provides the possibility of verifying proton beam range in tumor therapy. Dedicated experiments regarding the characterization of the camera system have been performed previously. Now, we aim at implementing the prototype into clinical application of monitoring patient treatments. Focused on this goal of translation into clinical operation, we systematically addressed remaining challenges and questions. We developed a robust energy calibration routine and corresponding quality assurance protocols. Furthermore, with dedicated experiments, we determined the positioning precision of the system to 1.1 mm (2σ). For the first time, we demonstrated the application of the slit camera, which was intentionally developed for pencil beam scanning, to double scattered proton beams. Systematic experiments with increasing complexity were performed. It was possible to visualize proton range shifts of 2-5 mm with the camera system in phantom experiments in passive scattered fields. Moreover, prompt γ-ray profiles for single iso-energy layers were acquired by synchronizing time resolved measurements to the rotation of the range modulator wheel of the treatment system. Thus, a mapping of the acquired profiles to different anatomical regions along the beam path is feasible and additional information on the source of potential range shifts can be obtained. With the work presented here, we show that an application of the slit camera in clinical treatments is possible and of potential benefit.