Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marlene A. Bunni is active.

Publication


Featured researches published by Marlene A. Bunni.


Journal of Biological Chemistry | 1998

A Structurally Altered Human Reduced Folate Carrier with Increased Folic Acid Transport Mediates a Novel Mechanism of Antifolate Resistance

Gerrit Jansen; Robert Mauritz; Stavit Drori; Hannah Sprecher; Ietje Kathmann; Marlene A. Bunni; David G. Priest; Paul Noordhuis; Jan H. Schornagel; Herbert M. Pinedo; Godefridus J. Peters; Yehuda G. Assaraf

CEM/MTX is a subline of human CCRF-CEM leukemia cells which displays >200-fold resistance to methotrexate (MTX) due to defective transport via the reduced folate carrier (RFC). CEM/MTX-low folate (LF) cells, derived by a gradual deprivation of folic acid from 2.3 μm to 2 nm (LF) in the cell culture medium of CEM/MTX cells, resulted in a >20-fold overexpression of a structurally altered RFC featuring; 1) a wild typeK m value for MTX transport but a 31-fold and 9-fold lower K m values for folic acid and leucovorin, respectively, relative to wild type RFC; 2) a 10-fold RFC1 gene amplification along with a >20-fold increased expression of the main 3.1-kilobase RFC1 mRNA; 3) a marked stimulation of MTX transport by anions (i.e. chloride); and 4) a G → A mutation at nucleotide 227 of the RFC cDNA in both CEM/MTX-LF and CEM/MTX, resulting in a lysine for glutamate substitution at amino acid residue 45 predicted to reside within the first transmembrane domain of the human RFC. Upon transfer of CEM/MTX-LF cells to folate-replete medium (2.3 μm folic acid), the more efficient folic acid uptake in CEM/MTX-LF cells resulted in a 7- and 24-fold elevated total folate pool compared with CEM and CEM/MTX cells, respectively (500 versus 69 and 21 pmol/mg of protein, respectively). This markedly elevated intracellular folate pool conferred a novel mechanism of resistance to polyglutamatable (e.g. ZD1694, DDATHF, and AG2034) and lipophilic antifolates (e.g. trimetrexate and pyrimethamine) by abolishing their polyglutamylation and circumventing target enzyme inhibition.


International Journal of Cancer | 2003

Loss of folylpoly-γ-glutamate synthetase activity is a dominant mechanism of resistance to polyglutamylation-dependent novel antifolates in multiple human leukemia sublines

Esti Liani; Lilah Rothem; Marlene A. Bunni; Clyde A. Smith; Gerrit Jansen; Yehuda G. Assaraf

We have studied the molecular basis of drug resistance in human CCRF‐CEM leukemia cells exposed to high dose intermittent pulses of novel polyglutamatable antifolates that target various folate‐dependent enzymes. These include the dihydrofolate reductase (DHFR) inhibitors edatrexate, methotrexate and aminopterin, the thymidylate synthase (TS) inhibitors ZD1694 and GW1843, the glycinamide ribonucleotide formyltransferase (GARTF) inhibitor DDATHF as well as the multitargeted antifolate LY231514 inhibiting both TS, DHFR and GARTF. Fourteen antifolate‐resistant sublines were isolated, 11 of which displayed a drug resistance phenotype that was based on impaired folylpoly‐γ‐glutamate synthetase (FPGS) activity as these cell lines: 1) typically lost 90–99% of parental FPGS activity; 2) expressed 1.4–3.3‐fold less FPGS mRNA (only 4 cell lines); 3) displayed up to 105‐fold resistance to polyglutamylation‐dependent antifolates including ZD1694 and MTA; 4) retained sensitivity to polyglutamylation‐independent antifolates including ZD9331 and PT523; 5) were up to 19‐fold hypersensitive to the lipid‐soluble antifolates trimetrexate and AG377; 6) had a normal or a small decrease in [3H]MTX transport; and 7) had a 2.1–8.3‐fold decreased cellular folate pools and a consequently increased folate growth requirement. The remaining 3 antifolate‐resistant sublines lost 94–97% of parental [3H]MTX transport and thus displayed a high level resistance to all hydrophilic antifolates. To screen for mutations in the hFPGS gene, we devised an RT‐PCR single strand conformational polymorphism (SSCP) assay. RT‐PCR‐SSCP analysis and DNA sequencing showed that only a single FPGS‐deficient subline harbored an FPGS mutation (Cys346Phe). Three‐dimensional modeling of the human FPGS based on the crystal structure of Lactobacillus casei FPGS suggested that this mutation maps to the active site and interferes with the catalytic activity of the enzyme due to a putative bulky clash between the mutant Phe346 and a native Phe350 within α‐helix A10 in a highly conserved C‐terminal hydrophobic core. This was consistent with a 23‐fold decreased affinity of the mutant Cys346Phe FPGS for L‐glutamate. We conclude that decreased FPGS activity is a dominant mechanism of resistance to polyglutamylation‐dependent novel antifolates upon a high‐dose intermittent exposure schedule. The finding that cells may exhibit 5 orders of magnitude of resistance to polyglutamylation‐dependent antifolates but in the same time retain parental sensitivity or hypersensitivity to polyglutamylation‐independent antifolates or lipophilic antifolates offers a potentially promising treatment strategy in the overcoming of FPGS‐based anticancer drug resistance.


Biochemical Pharmacology | 2003

The role of multidrug resistance proteins MRP1, MRP2 and MRP3 in cellular folate homeostasis

Jan Hendrik Hooijberg; Godefridus J. Peters; Yehuda G. Assaraf; Ietje Kathmann; David G. Priest; Marlene A. Bunni; A. J. P. Veerman; George L. Scheffer; Gertjan J. L. Kaspers; Gerrit Jansen

Previously, we reported that the multidrug resistance proteins MRP1, MRP2 and MRP3 confer resistance to therapeutic antifolates by mediating their cellular extrusion. We now determined whether MRPs also play a role in controlling cellular homeostasis of natural folates. In MRP1, MRP2 and MRP3-transfected 2008 human ovarian carcinoma cells total cellular folate content was 32-38% lower than in 2008 cells (105+/-14pmolfolate/mgprotein) when grown in medium containing 2.3 microM folic acid (FA). Under these conditions cellular growth rates were not compromised. However, when cells were challenged under folate-depleted conditions with a short exposure (4 hr) to FA or leucovorin, MRP1 and MRP3 overexpressing cells were impaired in their growth. In contrast to wild-type cells, MRP1 transfected cells retained only 60% of the maximum growth when exposed to 500 nM leucovorin or 500 microM FA. For 2008/MRP1 and 2008/MRP3 cells FA growth stimulation capacity was dramatically decreased when, during a 4 hr exposure, metabolism into rapidly polyglutamatable and retainable dihydrofolate was blocked by the dihydrofolate reductase inhibitor trimetrexate. To retain growth under such conditions MRP1 overexpressing cells required much higher concentrations of FA (EC(50) > 500 microM) compared to 2008 cells (EC(50): 12 microM). These results suggest that down- and up-regulation of MRP1 (and MRP3) expression can influence cellular folate homeostasis, in particular when cellular retention by polyglutamylation of folates is attenuated.


Biochemical Pharmacology | 2002

Multiple mechanisms of resistance to methotrexate and novel antifolates in human CCRF-CEM leukemia cells and their implications for folate homeostasis

Robert Mauritz; Godefridus J. Peters; David G. Priest; Yehuda G. Assaraf; Stavit Drori; Ietje Kathmann; Paul Noordhuis; Marlene A. Bunni; Andre Rosowsky; Gerrit Jansen

We determined the mechanisms of resistance of human CCRF-CEM leukemia cells to methotrexate (MTX) vs. those to six novel antifolates: the polyglutamatable thymidylate synthase (TS) inhibitors ZD1694, multitargeted antifolate, pemetrexed, ALIMTA (MTA) and GW1843U89, the non-polyglutamatable inhibitors of TS, ZD9331, and dihydrofolate reductase, PT523, as well as DDATHF, a polyglutamatable glycinamide ribonucleotide transformylase inhibitor. CEM cells were made resistant to these drugs by clinically relevant intermittent 24 hr exposures to 5-10 microM of MTX, ZD1694, GW1843U89, MTA and DDATHF, by intermittent 72 hr exposures to 5 microM of ZD9331 and by continuous exposure to stepwise increasing concentrations of ZD9331, GW1843U89 and PT523. Development of resistance required only 3 cycles of intermittent drug exposure to ZD1694 and MTA, but 5 cycles for MTX, DDATHF and GW1843U89 and 8 cycles for ZD9331. The predominant mechanism of resistance to ZD1694, MTA, MTX and DDATHF was impaired polyglutamylation due to approximately 10-fold decreased folylpolyglutamate synthetase activity. Resistance to intermittent exposures to GW1843U89 and ZD9331 was associated with a 2-fold decreased transport via the reduced folate carrier (RFC). The CEM cell lines resistant to intermittent exposures to MTX, ZD1694, MTA, DDATHF, GW1843U89 and ZD9331 displayed a depletion (up to 4-fold) of total intracellular reduced folate pools. Resistance to continuous exposure to ZD9331 was caused by a 14-fold increase in TS activity. CEM/GW70, selected by continuous exposure to GW1843U89 was 50-fold resistant to GW1843U89, whereas continuous exposure to PT523 generated CEM/PT523 cells that were highly resistant (1550-fold) to PT523. Both CEM/GW70 and CEM/PT523 displayed cross-resistance to several antifolates that depend on the RFC for cellular uptake, including MTX (95- and 530-fold). CEM/GW70 cells were characterized by a 12-fold decreased transport of [3H]MTX. Interestingly, however, CEM/GW70 cells displayed an enhanced transport of folic acid, consistent with the expression of a structurally altered RFC resulting in a 2.6-fold increase of intracellular folate pools. CEM/PT523 cells displayed a markedly impaired (100-fold) transport of [3H]MTX along with 12-fold decreased total folate pools. In conclusion, multifunctional mechanisms of resistance in CEM cells have a differential impact on cellular folate homeostasis: decreased polyglutamylation and transport defects lead to folate depletion, whereas a structurally altered RFC protein can provoke expanded intracellular folate pools.


Cancer Letters | 2002

Response to 5-fluorouracil chemotherapy is modified by dietary folic acid deficiency in ApcMin/+ mice

Jody M. Tucker; Celestia Davis; Maria E. Kitchens; Marlene A. Bunni; David G. Priest; H. Trent Spencer; Franklin G. Berger

5-Fluorouracil (5-FU) has been the foundation of advanced colorectal cancer treatment for over 40 years. The Apc(Min/+) mouse, which is genetically predisposed to intestinal neoplasia, was used to examine the effects of 5-FU in this system and the impact of dietary folic acid on those effects. 5-FU treatment resulted in a 60-80% reduction in tumor number. Clinically relevant toxicities, including myelosuppression and mucositis, are a part of this response. Tumor numbers rebounded completely following termination of 5-FU therapy, indicating that the drug inhibits tumor growth but does not eradicate them. In mice that were fed with a defined diet containing no folic acid (0 ppm), 5-FU not only induced regression of pre-existing tumors, but also inhibited tumor recovery following drug withdrawal. Our data indicate that a dietary folic acid deficiency, in promoting tumor regression and inhibiting tumor recovery, may enhance the therapeutic effects of 5-FU.


Biochemical Pharmacology | 2009

Identification of functional bradykinin B2 receptors endogenously expressed in HEK293 cells

Inga I. Kramarenko; Marlene A. Bunni; Thomas A. Morinelli; John R. Raymond; Maria N. Garnovskaya

The human embryonic kidney (HEK) 293 cell line is widely used in cell biology research. Although HEK293 cells have been meticulously studied, our knowledge about endogenous G protein-coupled receptors (GPCR) in these cells is incomplete. While studying the effects of bradykinin (BK), a potent growth factor for renal cells, we unexpectedly discovered that BK activates extracellular signal-regulated protein kinase 1 and 2 (ERK) in HEK293 cells. Thus, we hypothesized that HEK293 cells possess endogenous BK receptors. RT-PCR demonstrated the presence of mRNAs for BK B(1) and BK B(2) receptors in HEK293 cells. Western blotting with BK B(1) and BK B(2) receptor antibodies confirmed this result at the protein level. To establish that BK receptors are functional, we employed fluorescent measurements of intracellular Ca(2+), measured changes in extracellular acidification rate (ECAR) as a reflection of the Na(+)/H(+) exchange (NHE) with a Cytosensortrade microphysiometer, and assessed ERK activation by Western blotting with a phospho-specific ERK antibody. Exposure of HEK293 cells to BK produced a concentration-dependent rise in intracellular Ca(2+) (EC(50)=36.5+/-8.0 x 10(-9)M), a rapid increase in tyrosine phosphorylation of ERK (EC(50)=9.8+/-0.4 x 10(-9)M), and elevation in ECAR by approximately 20%. All of these signals were blocked by HOE-140 (B(2) receptor antagonist) but not by des-Arg(10)-HOE-140 (B(1) receptor antagonist). We conclude that HEK293 cells express endogenous functional BK B(2) receptors, which couple to the mobilization of intracellular Ca(2+), increases in ECAR and increases in ERK phosphorylation.


American Journal of Physiology-renal Physiology | 2014

Evidence for pericyte origin of TSC-associated renal angiomyolipomas and implications for angiotensin receptor inhibition therapy

Brian J. Siroky; Hong Yin; Bradley P. Dixon; Ryan J Reichert; Anna R. Hellmann; Thiruvamoor Ramkumar; Zenta Tsuchihashi; Marlene A. Bunni; Joshua Dillon; P. Darwin Bell; Julian Roy Sampson; John J. Bissler

Nearly all patients with tuberous sclerosis complex (TSC) develop renal angiomyolipomas, although the tumor cell of origin is unknown. We observed decreased renal angiomyolipoma development in patients with TSC2- polycystic kidney disease 1 deletion syndrome and hypertension that were treated from an early age with angiotensin-converting enzyme inhibitors or angiotensin receptor blockers compared with patients who did not receive this therapy. TSC-associated renal angiomyolipomas expressed ANG II type 1 receptors, platelet-derived growth factor receptor-β, desmin, α-smooth muscle actin, and VEGF receptor 2 but did not express the adipocyte marker S100 or the endothelial marker CD31. Sera of TSC patients exhibited increased vascular mural cell-secreted peptides, such as VEGF-A, VEGF-D, soluble VEGF receptor 2, and collagen type IV. These findings suggest that angiomyolipomas may arise from renal pericytes. ANG II treatment of angiomyolipoma cells in vitro resulted in an exaggerated intracellular Ca(2+) response and increased proliferation, which were blocked by the ANG II type 2 receptor antagonist valsartan. Blockade of ANG II signaling may have preventative therapeutic potential for angiomyolipomas.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2014

Deletion of airway cilia results in noninflammatory bronchiectasis and hyperreactive airways

Sandra K. Gilley; Antine E. Stenbit; Raymond C. Pasek; Kelli M. Sas; Stacy L. Steele; May Y. Amria; Marlene A. Bunni; Kimberly P. Estell; Lisa M. Schwiebert; Patrick A. Flume; Monika Gooz; Courtney J. Haycraft; Bradley K. Yoder; Caroline Miller; Jacqueline A. Pavlik; Grant A. Turner; Joseph H. Sisson; P. Darwin Bell

The mechanisms for the development of bronchiectasis and airway hyperreactivity have not been fully elucidated. Although genetic, acquired diseases and environmental influences may play a role, it is also possible that motile cilia can influence this disease process. We hypothesized that deletion of a key intraflagellar transport molecule, IFT88, in mature mice causes loss of cilia, resulting in airway remodeling. Airway cilia were deleted by knockout of IFT88, and airway remodeling and pulmonary function were evaluated. In IFT88(-) mice there was a substantial loss of airway cilia on respiratory epithelium. Three months after the deletion of cilia, there was clear evidence for bronchial remodeling that was not associated with inflammation or apparent defects in mucus clearance. There was evidence for airway epithelial cell hypertrophy and hyperplasia. IFT88(-) mice exhibited increased airway reactivity to a methacholine challenge and decreased ciliary beat frequency in the few remaining cells that possessed cilia. With deletion of respiratory cilia there was a marked increase in the number of club cells as seen by scanning electron microscopy. We suggest that airway remodeling may be exacerbated by the presence of club cells, since these cells are involved in airway repair. Club cells may be prevented from differentiating into respiratory epithelial cells because of a lack of IFT88 protein that is necessary to form a single nonmotile cilium. This monocilium is a prerequisite for these progenitor cells to transition into respiratory epithelial cells. In conclusion, motile cilia may play an important role in controlling airway structure and function.


American Journal of Physiology-cell Physiology | 2011

Role of integrins in angiotensin II-induced proliferation of vascular smooth muscle cells

Marlene A. Bunni; Inga I. Kramarenko; Linda P. Walker; John R. Raymond; Maria N. Garnovskaya

Angiotensin II (AII) binds to G protein-coupled receptor AT(1) and stimulates extracellular signal-regulated kinase (ERK), leading to vascular smooth muscle cells (VSMC) proliferation. Proliferation of mammalian cells is tightly regulated by adhesion to the extracellular matrix, which occurs via integrins. To study cross-talk between G protein-coupled receptor- and integrin-induced signaling, we hypothesized that integrins are involved in AII-induced proliferation of VSMC. Using Oligo GEArray and quantitative RT-PCR, we established that messages for α(1)-, α(5)-, α(V)-, and β(1)-integrins are predominant in VSMC. VSMC were cultured on plastic dishes or on plates coated with either extracellular matrix or poly-d-lysine (which promotes electrostatic cell attachment independent of integrins). AII significantly induced proliferation in VSMC grown on collagen I or fibronectin, and this effect was blocked by the ERK inhibitor PD-98059, suggesting that AII-induced proliferation requires ERK activity. VSMC grown on collagen I or on fibronectin demonstrated approximately three- and approximately sixfold increases in ERK phosphorylation after stimulation with 100 nM AII, respectively, whereas VSMC grown on poly-d-lysine demonstrated no significant ERK activation, supporting the importance of integrin-mediated adhesion. AII-induced ERK activation was reduced by >65% by synthetic peptides containing an RGD (arginine-glycine-aspartic acid) sequence that inhibit α(5)β(1)-integrin, and by ∼60% by the KTS (lysine-threonine-serine)-containing peptides specific for integrin-α(1)β(1). Furthermore, neutralizing antibody against β(1)-integrin and silencing of α(1), α(5), and β(1) expression by transfecting VSMC with short interfering RNAs resulted in decreased AII-induced ERK activation. This work demonstrates roles for specific integrins (most likely α(5)β(1) and α(1)β(1)) in AII-induced proliferation of VSMC.


PLOS ONE | 2013

Reducing FLI1 levels in the MRL/lpr lupus mouse model impacts T cell function by modulating glycosphingolipid metabolism.

Erin Morris Richard; Thirumagal Thiyagarajan; Marlene A. Bunni; Fahmin Basher; Patrick O. Roddy; Leah J. Siskind; Paul J. Nietert; Tamara K. Nowling

Systemic Lupus erythematosus (SLE) is an autoimmune disease caused, in part, by abnormalities in cells of the immune system including B and T cells. Genetically reducing globally the expression of the ETS transcription factor FLI1 by 50% in two lupus mouse models significantly improves disease measures and survival through an unknown mechanism. In this study we analyze the effects of reducing FLI1 in the MRL/lpr lupus prone model on T cell function. We demonstrate that adoptive transfer of MRL/lpr Fli1 +/+ or Fli1 +/- T cells and B cells into Rag1-deficient mice results in significantly decreased serum immunoglobulin levels in animals receiving Fli1 +/- lupus T cells compared to animals receiving Fli1 +/+ lupus T cells regardless of the genotype of co-transferred lupus B cells. Ex vivo analyses of MRL/lpr T cells demonstrated that Fli1 +/- T cells produce significantly less IL-4 during early and late disease and exhibited significantly decreased TCR-specific activation during early disease compared to Fli1 +/+ T cells. Moreover, the Fli1 +/- T cells expressed significantly less neuraminidase 1 (Neu1) message and decreased NEU activity during early disease and significantly decreased levels of glycosphingolipids during late disease compared to Fli1 +/+ T cells. FLI1 dose-dependently activated the Neu1 promoter in mouse and human T cell lines. Together, our results suggest reducing FLI1 in lupus decreases the pathogenicity of T cells by decreasing TCR-specific activation and IL-4 production in part through the modulation of glycosphingolipid metabolism. Reducing the expression of FLI1 or targeting the glycosphingolipid metabolic pathway in lupus may serve as a therapeutic approach to treating lupus.

Collaboration


Dive into the Marlene A. Bunni's collaboration.

Top Co-Authors

Avatar

David G. Priest

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

John R. Raymond

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Maria N. Garnovskaya

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Inga I. Kramarenko

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

P. Darwin Bell

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerrit Jansen

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Stacy L. Steele

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Godefridus J. Peters

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Yehuda G. Assaraf

Technion – Israel Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge