Marlene T. Kim
Rutgers University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marlene T. Kim.
Chemical Research in Toxicology | 2014
Hao Zhu; Jun Zhang; Marlene T. Kim; Abena Boison; Alexander Sedykh; Kimberlee Moran
High-throughput screening (HTS) assays that measure the in vitro toxicity of environmental compounds have been widely applied as an alternative to in vivo animal tests of chemical toxicity. Current HTS studies provide the community with rich toxicology information that has the potential to be integrated into toxicity research. The available in vitro toxicity data is updated daily in structured formats (e.g., deposited into PubChem and other data-sharing web portals) or in an unstructured way (papers, laboratory reports, toxicity Web site updates, etc.). The information derived from the current toxicity data is so large and complex that it becomes difficult to process using available database management tools or traditional data processing applications. For this reason, it is necessary to develop a big data approach when conducting modern chemical toxicity research. In vitro data for a compound, obtained from meaningful bioassays, can be viewed as a response profile that gives detailed information about the compound’s ability to affect relevant biological proteins/receptors. This information is critical for the evaluation of complex bioactivities (e.g., animal toxicities) and grows rapidly as big data in toxicology communities. This review focuses mainly on the existing structured in vitro data (e.g., PubChem data sets) as response profiles for compounds of environmental interest (e.g., potential human/animal toxicants). Potential modeling and mining tools to use the current big data pool in chemical toxicity research are also described.
Industrial Relations | 1999
Marlene T. Kim
Standard economic and compensation theories suggest that voluntary turnover should decline when a firm pays wages that are higher than those of its competitors. Turnover behavior in the State of Californias Civil Service, however, does not support this prediction. Using a fixed effects estimator to control for job-specific characteristics, I find that the wages California pays relative to those of its competitors has little or no effect on turnover. In addition, estimates of the elasticity of turnover with respect to alternative wages indicate that higher wage rates do not pay for themselves through lower turnover costs. Instead, the absolute wage level and wage growth have large effects. In other words, it appears that workers are less likely to quit jobs that pay high wages and have larger wage increases, no matter how their wages compare to those paid by other employers.
Pharmaceutical Research | 2014
Marlene T. Kim; Alexander Sedykh; Suman K. Chakravarti; Roustem Saiakhov; Hao Zhu
PurposeOral bioavailability (%F) is a key factor that determines the fate of a new drug in clinical trials. Traditionally, %F is measured using costly and time-consuming experimental tests. Developing computational models to evaluate the %F of new drugs before they are synthesized would be beneficial in the drug discovery process.MethodsWe employed Combinatorial Quantitative Structure-Activity Relationship approach to develop several computational %F models. We compiled a %F dataset of 995 drugs from public sources. After generating chemical descriptors for each compound, we used random forest, support vector machine, k nearest neighbor, and CASE Ultra to develop the relevant QSAR models. The resulting models were validated using five-fold cross-validation.ResultsThe external predictivity of %F values was poor (R2 = 0.28, n = 995, MAE = 24), but was improved (R2 = 0.40, n = 362, MAE = 21) by filtering unreliable predictions that had a high probability of interacting with MDR1 and MRP2 transporters. Furthermore, classifying the compounds according to the %F values (%F < 50% as “low”, %F ≥ 50% as ‘high”) and developing category QSAR models resulted in an external accuracy of 76%.ConclusionsIn this study, we developed predictive %F QSAR models that could be used to evaluate new drug compounds, and integrating drug-transporter interactions data greatly benefits the resulting models.
Chemical Research in Toxicology | 2012
Renee Solimeo; Jun Zhang; Marlene T. Kim; Alexander Sedykh; Hao Zhu
Regulatory agencies require testing of chemicals and products to protect workers and consumers from potential eye injury hazards. Animal screening, such as the rabbit Draize test, for potential environmental toxicants is time-consuming and costly. Therefore, virtual screening using computational models to tag potential ocular toxicants is attractive to toxicologists and policy makers. We have developed quantitative structure-activity relationship (QSAR) models for a set of small molecules with animal ocular toxicity data compiled by the National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods. The data set was initially curated by removing duplicates, mixtures, and inorganics. The remaining 75 compounds were used to develop QSAR models. We applied both k nearest neighbor and random forest statistical approaches in combination with Dragon and Molecular Operating Environment descriptors. Developed models were validated on an external set of 34 compounds collected from additional sources. The external correct classification rates (CCR) of all individual models were between 72 and 87%. Furthermore, the consensus model, based on the prediction average of individual models, showed additional improvement (CCR = 0.93). The validated models could be used to screen external chemical libraries and prioritize chemicals for in vivo screening as potential ocular toxicants.
Pharmaceutical Research | 2015
Wenyi Wang; Marlene T. Kim; Alexander Sedykh; Hao Zhu
ABSTRACTPurposeExperimental Blood–Brain Barrier (BBB) permeability models for drug molecules are expensive and time-consuming. As alternative methods, several traditional Quantitative Structure-Activity Relationship (QSAR) models have been developed previously. In this study, we aimed to improve the predictivity of traditional QSAR BBB permeability models by employing relevant public bio-assay data in the modeling process.MethodsWe compiled a BBB permeability database consisting of 439 unique compounds from various resources. The database was split into a modeling set of 341 compounds and a validation set of 98 compounds. Consensus QSAR modeling workflow was employed on the modeling set to develop various QSAR models. A five-fold cross-validation approach was used to validate the developed models, and the resulting models were used to predict the external validation set compounds. Furthermore, we used previously published membrane transporter models to generate relevant transporter profiles for target compounds. The transporter profiles were used as additional biological descriptors to develop hybrid QSAR BBB models.ResultsThe consensus QSAR models have R2 = 0.638 for five-fold cross-validation and R2 = 0.504 for external validation. The consensus model developed by pooling chemical and transporter descriptors showed better predictivity (R2 = 0.646 for five-fold cross-validation and R2 = 0.526 for external validation). Moreover, several external bio-assays that correlate with BBB permeability were identified using our automatic profiling tool.ConclusionsThe BBB permeability models developed in this study can be useful for early evaluation of new compounds (e.g., new drug candidates). The combination of chemical and biological descriptors shows a promising direction to improve the current traditional QSAR models.
Environmental Health Perspectives | 2015
Marlene T. Kim; Ruili Huang; Alexander Sedykh; Wenyi Wang; Menghang Xia; Hao Zhu
Background: Hepatotoxicity accounts for a substantial number of drugs being withdrawn from the market. Using traditional animal models to detect hepatotoxicity is expensive and time-consuming. Alternative in vitro methods, in particular cell-based high-throughput screening (HTS) studies, have provided the research community with a large amount of data from toxicity assays. Among the various assays used to screen potential toxicants is the antioxidant response element beta lactamase reporter gene assay (ARE-bla), which identifies chemicals that have the potential to induce oxidative stress and was used to test > 10,000 compounds from the Tox21 program. Objective: The ARE-bla computational model and HTS data from a big data source (PubChem) were used to profile environmental and pharmaceutical compounds with hepatotoxicity data. Methods: Quantitative structure–activity relationship (QSAR) models were developed based on ARE-bla data. The models predicted the potential oxidative stress response for known liver toxicants when no ARE-bla data were available. Liver toxicants were used as probe compounds to search PubChem Bioassay and generate a response profile, which contained thousands of bioassays (> 10 million data points). By ranking the in vitro–in vivo correlations (IVIVCs), the most relevant bioassay(s) related to hepatotoxicity were identified. Results: The liver toxicants profile contained the ARE-bla and relevant PubChem assays. Potential toxicophores for well-known toxicants were created by identifying chemical features that existed only in compounds with high IVIVCs. Conclusion: Profiling chemical IVIVCs created an opportunity to fully explore the source-to-outcome continuum of modern experimental toxicology using cheminformatics approaches and big data sources. Citation: Kim MT, Huang R, Sedykh A, Wang W, Xia M, Zhu H. 2016. Mechanism profiling of hepatotoxicity caused by oxidative stress using antioxidant response element reporter gene assay models and big data. Environ Health Perspect 124:634–641; http://dx.doi.org/10.1289/ehp.1509763
Industrial Relations | 1999
Marlene T. Kim
Analysis of the California State Civil Service indicates that its occupational wage structure is very stable. Salaries established in 1931 continue to influence current wages, over sixty years later, even while controlling for market wages. This results from the California Services policy of maintaining the relative wage structure that was initially established in 1931, despite conflicting market wages. Because the California Service explicitly lowered salaries for female-dominated jobs when it established its initial salary structure, these jobs remained underpaid
Journal of Computer-aided Molecular Design | 2014
Brienne Sprague; Qian Shi; Marlene T. Kim; Liying Zhang; Alexander Sedykh; Eiichiro Ichiishi; Harukuni Tokuda; Kuo Hsiung Lee; Hao Zhu
1.6 billion from 1973 to 1993. These findings support notions of wage rigidity and fairness in efficiency wage and institutional labor market theories.
Frontiers in Environmental Science | 2016
Kathryn Ribay; Marlene T. Kim; Wenyi Wang; Daniel Pinolini; Hao Zhu
Abstract Compared to the current knowledge on cancer chemotherapeutic agents, only limited information is available on the ability of organic compounds, such as drugs and/or natural products, to prevent or delay the onset of cancer. In order to evaluate chemical chemopreventive potentials and design novel chemopreventive agents with low to no toxicity, we developed predictive computational models for chemopreventive agents in this study. First, we curated a database containing over 400 organic compounds with known chemoprevention activities. Based on this database, various random forest and support vector machine binary classifiers were developed. All of the resulting models were validated by cross validation procedures. Then, the validated models were applied to virtually screen a chemical library containing around 23,000 natural products and derivatives. We selected a list of 148 novel chemopreventive compounds based on the consensus prediction of all validated models. We further analyzed the predicted active compounds by their ease of organic synthesis. Finally, 18 compounds were synthesized and experimentally validated for their chemopreventive activity. The experimental validation results paralleled the cross validation results, demonstrating the utility of the developed models. The predictive models developed in this study can be applied to virtually screen other chemical libraries to identify novel lead compounds for the chemoprevention of cancers.
Bioinformatics | 2016
Daniel P. Russo; Marlene T. Kim; Wenyi Wang; Daniel Pinolini; Sunil M. Shende; Judy Strickland; Thomas Hartung; Hao Zhu
Estrogen receptors (ERα) are a critical target for drug design as well as a potential source of toxicity when activated unintentionally. Thus, evaluating potential ERα binding agents is critical in both drug discovery and chemical toxicity areas. Using computational tools, e.g., Quantitative Structure-Activity Relationship (QSAR) models, can predict potential ERα binding agents before chemical synthesis. The purpose of this project was to develop enhanced predictive models of ERα binding agents by utilizing advanced cheminformatics tools that can integrate publicly available bioassay data. The initial ERα binding agent data set, consisting of 446 binders and 8307 non-binders, was obtained from the Tox21 Challenge project organized by the NIH Chemical Genomics Center (NCGC). After removing the duplicates and inorganic compounds, this data set was used to create a training set (259 binders and 259 non-binders). This training set was used to develop QSAR models using chemical descriptors. The resulting models were then used to predict the binding activity of 264 external compounds, which were available to us after the models were developed. The cross-validation results of training set [Correct Classification Rate (CCR) = 0.72] were much higher than the external predictivity of the unknown compounds (CCR = 0.59). To improve the conventional QSAR models, all compounds in the training set were used to search PubChem and generate a profile of their biological responses across thousands of bioassays. The most important bioassays were prioritized to generate a similarity index that was used to calculate the biosimilarity score between each two compounds. The nearest neighbors for each compound within the set were then identified and its ERα binding potential was predicted by its nearest neighbors in the training set. The hybrid model performance (CCR = 0.94 for cross validation; CCR = 0.68 for external prediction) showed significant improvement over the original QSAR models, particularly for the activity cliffs that induce prediction errors. The results of this study indicate that the response profile of chemicals from public data provides useful information for modeling and evaluation purposes. The public big data resources should be considered along with chemical structure information when predicting new compounds, such as unknown ERα binding agents.