Marloes Dekker Nitert
University of Queensland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marloes Dekker Nitert.
PLOS Genetics | 2013
Tina Rönn; Petr Volkov; Cajsa Davegårdh; Tasnim Dayeh; Elin Hall; Anders Olsson; Emma Nilsson; Åsa Tornberg; Marloes Dekker Nitert; Karl-Fredrik Eriksson; Helena A. Jones; Leif Groop; Charlotte Ling
Epigenetic mechanisms are implicated in gene regulation and the development of different diseases. The epigenome differs between cell types and has until now only been characterized for a few human tissues. Environmental factors potentially alter the epigenome. Here we describe the genome-wide pattern of DNA methylation in human adipose tissue from 23 healthy men, with a previous low level of physical activity, before and after a six months exercise intervention. We also investigate the differences in adipose tissue DNA methylation between 31 individuals with or without a family history of type 2 diabetes. DNA methylation was analyzed using Infinium HumanMethylation450 BeadChip, an array containing 485,577 probes covering 99% RefSeq genes. Global DNA methylation changed and 17,975 individual CpG sites in 7,663 unique genes showed altered levels of DNA methylation after the exercise intervention (q<0.05). Differential mRNA expression was present in 1/3 of gene regions with altered DNA methylation, including RALBP1, HDAC4 and NCOR2 (q<0.05). Using a luciferase assay, we could show that increased DNA methylation in vitro of the RALBP1 promoter suppressed the transcriptional activity (p = 0.03). Moreover, 18 obesity and 21 type 2 diabetes candidate genes had CpG sites with differences in adipose tissue DNA methylation in response to exercise (q<0.05), including TCF7L2 (6 CpG sites) and KCNQ1 (10 CpG sites). A simultaneous change in mRNA expression was seen for 6 of those genes. To understand if genes that exhibit differential DNA methylation and mRNA expression in human adipose tissue in vivo affect adipocyte metabolism, we silenced Hdac4 and Ncor2 respectively in 3T3-L1 adipocytes, which resulted in increased lipogenesis both in the basal and insulin stimulated state. In conclusion, exercise induces genome-wide changes in DNA methylation in human adipose tissue, potentially affecting adipocyte metabolism.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Ionel Sandovici; Noel H. Smith; Marloes Dekker Nitert; Matthew Ackers-Johnson; Santiago Uribe-Lewis; Yoko Ito; R. Huw Jones; Victor E. Marquez; William Cairns; Mohammed Tadayyon; Laura P. O'Neill; Adele Murrell; Charlotte Ling; Miguel Constancia; Susan E. Ozanne
Environmental factors interact with the genome throughout life to determine gene expression and, consequently, tissue function and disease risk. One such factor that is known to play an important role in determining long-term metabolic health is diet during critical periods of development. Epigenetic regulation of gene expression has been implicated in mediating these programming effects of early diet. The precise epigenetic mechanisms that underlie these effects remain largely unknown. Here, we show that the transcription factor Hnf4a, which has been implicated in the etiology of type 2 diabetes (T2D), is epigenetically regulated by maternal diet and aging in rat islets. Transcriptional activity of Hnf4a in islets is restricted to the distal P2 promoter through its open chromatin configuration and an islet-specific interaction between the P2 promoter and a downstream enhancer. Exposure to suboptimal nutrition during early development leads to epigenetic silencing at the enhancer region, which weakens the P2 promoter–enhancer interaction and results in a permanent reduction in Hnf4a expression. Aging leads to progressive epigenetic silencing of the entire Hnf4a locus in islets, an effect that is more pronounced in rats exposed to a poor maternal diet. Our findings provide evidence for environmentally induced epigenetic changes at the Hnf4a enhancer that alter its interaction with the P2 promoter, and consequently determine T2D risk. We therefore propose that environmentally induced changes in promoter-enhancer interactions represent a fundamental epigenetic mechanism by which nutrition and aging can influence long-term health.
Diabetes | 2012
Marloes Dekker Nitert; Tasnim Dayeh; Peter Volkov; Targ Elgzyri; Elin Hall; Emma Nilsson; Beatrice Yang; Stefan Lang; Hemang Parikh; Ylva Wessman; Holger Weishaupt; Joanne L. Attema; Mia Abels; Nils Wierup; Peter Almgren; Per-Anders Jansson; Tina Rönn; Ola Hansson; Karl-Frederik Eriksson; Leif Groop; Charlotte Ling
To identify epigenetic patterns, which may predispose to type 2 diabetes (T2D) due to a family history (FH) of the disease, we analyzed DNA methylation genome-wide in skeletal muscle from individuals with (FH+) or without (FH−) an FH of T2D. We found differential DNA methylation of genes in biological pathways including mitogen-activated protein kinase (MAPK), insulin, and calcium signaling (P ≤ 0.007) and of individual genes with known function in muscle, including MAPK1, MYO18B, HOXC6, and the AMP-activated protein kinase subunit PRKAB1 in skeletal muscle of FH+ compared with FH− men. We further validated our findings from FH+ men in monozygotic twin pairs discordant for T2D, and 40% of 65 analyzed genes exhibited differential DNA methylation in muscle of both FH+ men and diabetic twins. We further examined if a 6-month exercise intervention modifies the genome-wide DNA methylation pattern in skeletal muscle of the FH+ and FH− individuals. DNA methylation of genes in retinol metabolism and calcium signaling pathways (P < 3 × 10−6) and with known functions in muscle and T2D including MEF2A, RUNX1, NDUFC2, and THADA decreased after exercise. Methylation of these human promoter regions suppressed reporter gene expression in vitro. In addition, both expression and methylation of several genes, i.e., ADIPOR1, BDKRB2, and TRIB1, changed after exercise. These findings provide new insights into how genetic background and environment can alter the human epigenome.
Molecular Endocrinology | 2012
Beatrice Yang; Tasnim Dayeh; Petr Volkov; Clare L. Kirkpatrick; Siri Malmgren; Xingjun Jing; Erik Renström; Claes B. Wollheim; Marloes Dekker Nitert; Charlotte Ling
Mutations in pancreatic duodenal homeobox 1 (PDX-1) can cause a monogenic form of diabetes (maturity onset diabetes of the young 4) in humans, and silencing Pdx-1 in pancreatic β-cells of mice causes diabetes. However, it is not established whether epigenetic alterations of PDX-1 influence type 2 diabetes (T2D) in humans. Here we analyzed mRNA expression and DNA methylation of PDX-1 in human pancreatic islets from 55 nondiabetic donors and nine patients with T2D. We further studied epigenetic regulation of PDX-1 in clonal β-cells. PDX-1 expression was decreased in pancreatic islets from patients with T2D compared with nondiabetic donors (P = 0.0002) and correlated positively with insulin expression (rho = 0.59, P = 0.000001) and glucose-stimulated insulin secretion (rho = 0.41, P = 0.005) in the human islets. Ten CpG sites in the distal PDX-1 promoter and enhancer regions exhibited significantly increased DNA methylation in islets from patients with T2D compared with nondiabetic donors. DNA methylation of PDX-1 correlated negatively with its gene expression in the human islets (rho = -0.64, P = 0.0000029). Moreover, methylation of the human PDX-1 promoter and enhancer regions suppressed reporter gene expression in clonal β-cells (P = 0.04). Our data further indicate that hyperglycemia decreases gene expression and increases DNA methylation of PDX-1 because glycosylated hemoglobin (HbA1c) correlates negatively with mRNA expression (rho = -0.50, P = 0.0004) and positively with DNA methylation (rho = 0.54, P = 0.00024) of PDX-1 in the human islets. Furthermore, while Pdx-1 expression decreased, Pdx-1 methylation and Dnmt1 expression increased in clonal β-cells exposed to high glucose. Overall, epigenetic modifications of PDX-1 may play a role in the development of T2D, given that pancreatic islets from patients with T2D and β-cells exposed to hyperglycemia exhibited increased DNA methylation and decreased expression of PDX-1. The expression levels of PDX-1 were further associated with insulin secretion in the human islets.
Diabetes | 2013
Mary E. Travers; Deborah J.G. Mackay; Marloes Dekker Nitert; Andrew P. Morris; Cecilia M. Lindgren; Andrew Berry; Paul Johnson; Neil A. Hanley; Leif Groop; Mark I. McCarthy; Anna L. Gloyn
The molecular basis of type 2 diabetes predisposition at most established susceptibility loci remains poorly understood. KCNQ1 maps within the 11p15.5 imprinted domain, a region with an established role in congenital growth phenotypes. Variants intronic to KCNQ1 influence diabetes susceptibility when maternally inherited. By use of quantitative PCR and pyrosequencing of human adult islet and fetal pancreas samples, we investigated the imprinting status of regional transcripts and aimed to determine whether type 2 diabetes risk alleles influence regional DNA methylation and gene expression. The results demonstrate that gene expression patterns differ by developmental stage. CDKN1C showed monoallelic expression in both adult and fetal tissue, whereas PHLDA2, SLC22A18, and SLC22A18AS were biallelically expressed in both tissues. Temporal changes in imprinting were observed for KCNQ1 and KCNQ1OT1, with monoallelic expression in fetal tissues and biallelic expression in adult samples. Genotype at the type 2 diabetes risk variant rs2237895 influenced methylation levels of regulatory sequence in fetal pancreas but without demonstrable effects on gene expression. We demonstrate that CDKN1C, KCNQ1, and KCNQ1OT1 are most likely to mediate diabetes susceptibility at the KCNQ1 locus and identify temporal differences in imprinting status and methylation effects, suggesting that diabetes risk effects may be mediated in early development.
BMC Pregnancy and Childbirth | 2013
Marloes Dekker Nitert; Helen L. Barrett; Katie Foxcroft; Anne Tremellen; Shelley A. Wilkinson; Barbara E. Lingwood; Jacinta M. Tobin; Chris McSweeney; Peter O’Rourke; H. David McIntyre; Leonie K. Callaway
BackgroundObesity is increasing in the child-bearing population as are the rates of gestational diabetes. Gestational diabetes is associated with higher rates of Cesarean Section for the mother and increased risks of macrosomia, higher body fat mass, respiratory distress and hypoglycemia for the infant. Prevention of gestational diabetes through life style intervention has proven to be difficult. A Finnish study showed that ingestion of specific probiotics altered the composition of the gut microbiome and thereby metabolism from early gestation and decreased rates of gestational diabetes in normal weight women. In SPRING (the Study of Probiotics IN the prevention of Gestational diabetes), the effectiveness of probiotics ingestion for the prevention of gestational diabetes will be assessed in overweight and obese women.Methods/designSPRING is a multi-center, prospective, double-blind randomized controlled trial run at two tertiary maternity hospitals in Brisbane, Australia. Five hundred and forty (540) women with a BMI > 25.0 kg/m2 will be recruited over 2 years and receive either probiotics or placebo capsules from 16 weeks gestation until delivery. The probiotics capsules contain > 1x109 cfu each of Lactobacillus rhamnosus GG and Bifidobacterium lactis BB-12 per capsule. The primary outcome is diagnosis of gestational diabetes at 28 weeks gestation. Secondary outcomes include rates of other pregnancy complications, gestational weight gain, mode of delivery, change in gut microbiome, preterm birth, macrosomia, and infant body composition. The trial has 80% power at a 5% 2-sided significance level to detect a >50% change in the rates of gestational diabetes in this high-risk group of pregnant women.DiscussionSPRING will show if probiotics can be used as an easily implementable method of preventing gestational diabetes in the high-risk group of overweight and obese pregnant women.
Molecular and Cellular Endocrinology | 2005
Marloes Dekker Nitert; Simona I. Chisalita; Karolina Olsson; Karin E. Bornfeldt; Hans J. Arnqvist
Vascular complications are common in diabetes. IGF-I receptors (IGF-IR) and insulin receptors (IR) in endothelial cells might respond to altered levels of IGF-I and insulin, resulting in altered endothelial function in diabetes. We therefore studied IGF-IR and IR gene expression, ligand binding, receptor protein, and phosphorylation in human umbilical vein endothelial cells (HUVEC). IGF-IR mRNA was more abundant than IR mRNA in freshly isolated HUVEC (IGF-IR/IR ratio 7.1 +/- 1.5) and in cultured HUVEC (ratio 3.5 +/- 0.51). Accordingly, specific binding of (125)I-IGF-I (0.64 +/- 0.25%) was higher than that of (125)I-insulin (0.25 +/- 0.09%). Protein was detected for both receptors and IGF-I/insulin hybrid receptors. IGF-IR phosphorylation was stimulated by 10(-10) to 10(-8) M IGF-I. IR were activated by 10(-9) to 10(-8) M insulin and IGF-I. We conclude that HUVEC express more IGF-IR than IR, and also express hybrid receptors. Both IGF-I and insulin phosphorylate their own receptors but only IGF-I seems to phosphorylate hybrid receptors.
Regulatory Peptides | 2010
Camilla Ringström; Marloes Dekker Nitert; Hedvig Bennet; Malin Fex; Philippe Valet; Jens F. Rehfeld; Lennart Friis-Hansen; Nils Wierup
Apelin, a recently discovered peptide with wide tissue distribution, regulates feeding behavior, improves glucose utilization, and inhibits insulin secretion. We examined whether apelin is expressed in human islets, as well as in normal and type 2 diabetic (T2D) animal islets. Further, we studied islet apelin regulation and the effect of apelin on insulin secretion. Apelin expression and regulation was examined in human and animal specimens using immunocytochemistry, in situ hybridization, and real-time PCR. Insulin secretion was studied in INS-1 (832/13) clonal beta cells. APJ-receptor expression was studied using real-time PCR. In human and murine islets apelin was predominantly expressed in beta cells and alpha cells; a subpopulation of the PP cells in human islets also harbored apelin. In porcine and feline islets apelin was mainly expressed in beta cells. APJ-receptor expression was detected in INS-1 (832/13) cells, and in human and mouse islets. A high dose (1microM) of apelin-36 caused a moderate increase in glucose-stimulated insulin secretion (30%; p<0.001), while lower concentrations (10-100nM) of apelin robustly reduced insulin secretion by 50% (p<0.001). Apelin was upregulated in beta cells of T2D db/db mice (47% vs. controls; p<0.02) and GK-rats (74% vs. controls; p<0.002), but human islet apelin expression was unaffected by glucose. On the other hand, human islet apelin expression was diminished after culture in glucocorticoids (16% vs. controls; p<0.01). We conclude that apelin is a novel insulin-regulating islet peptide in humans and several laboratory animals. Islet apelin expression is negatively regulated by glucocorticoids, and upregulated in T2D animals. The presence of apelin receptors in islets suggests a role for apelin as a paracrine or autocrine messenger within the islets.
Diabetes Care | 2014
Helen L. Barrett; Marloes Dekker Nitert; H. David McIntyre; Leonie K. Callaway
Outcomes in pregnancies complicated by preexisting diabetes (type 1 and type 2) and gestational diabetes mellitus have improved, but there is still excess morbidity compared with normal pregnancy. Management strategies appropriately focus on maternal glycemia, which demonstrably improves pregnancy outcomes for mother and infant. However, we may be reaching the boundaries of obtainable glycemic control for many women. It has been acknowledged that maternal lipids are important in pregnancies complicated by diabetes. Elevated maternal lipids are associated with preeclampsia, preterm delivery, and large-for-gestational-age infants. Despite this understanding, assessment of management strategies targeting maternal lipids has been neglected to date. Consideration needs to be given to whether normalizing maternal lipids would further improve pregnancy outcomes. This review examines the dyslipidemia associated with pregnancy complicated by diabetes, reviews possible therapies, and considers whether it is time to start actively managing this aspect of maternal metabolism.
European Journal of Endocrinology | 2011
Anders Olsson; Beatrice Yang; Elin Hall; Jalal Taneera; Albert Salehi; Marloes Dekker Nitert; Charlotte Ling
Objective Gene expression alterations, especially in target tissues of insulin, have been associated with type 2 diabetes (T2D). In this study, we examined if genes involved in oxidative phosphorylation (OXPHOS) show differential gene expression and DNA methylation in pancreatic islets from patients with T2D compared with non-diabetic donors. Design and methods Gene expression was analyzed in human pancreatic islets from 55 non-diabetic donors and nine T2D donors using microarray. Results While the expected number of OXPHOS genes with reduced gene expression is 7.21, we identified 21 downregulated OXPHOS genes in pancreatic islets from patients with T2D using microarray analysis. This gives a ratio of observed over expected OXPHOS genes of 26.37 by a χ2-test with P=2.81×10−7. The microarray data was validated by qRT-PCR for four selected OXPHOS genes: NDUFA5, NDUFA10, COX11, and ATP6V1H. All four OXPHOS genes were significantly downregulated in islets from patients with T2D compared with non-diabetic donors using qRT-PCR (P≤0.01). Furthermore, HbAlc levels correlated negatively with gene expression of NDUFA5, COX11, and ATP6V1H (P<0.05). Gene expression of NDUFA5, NDUFA10, COX11, and ATP6V1H correlated positively with glucose-stimulated insulin secretion (P<0.03). Finally, DNA methylation was analyzed upstream of the transcription start for NDUFA5, COX11, and ATP6V1H. However, none of the analyzed CpG sites in the three genes showed differences in DNA methylation in islets from donors with T2D compared with non-diabetic donors. Conclusion Pancreatic islets from patients with T2D show decreased expression of a set of OXPHOS genes, which may lead to impaired insulin secretion.