Marlon G. Veloso de Santana
Oswaldo Cruz Foundation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marlon G. Veloso de Santana.
Nature | 2012
Philip A. Mudd; Mauricio A. Martins; Adam J. Ericsen; Damien C. Tully; Karen A. Power; Alex T. Bean; Shari M. Piaskowski; Lijie Duan; Aaron Seese; Adrianne D. Gladden; Kim L. Weisgrau; Jessica Furlott; Young Kim; Marlon G. Veloso de Santana; Eva G. Rakasz; Saverio Capuano; Nancy A. Wilson; Myrna C. Bonaldo; Ricardo Galler; David B. Allison; Michael Piatak; Ashley T. Haase; Jeffrey D. Lifson; Todd M. Allen; David I. Watkins
Developing a vaccine for human immunodeficiency virus (HIV) may be aided by a complete understanding of those rare cases in which some HIV-infected individuals control replication of the virus. Most of these elite controllers express the histocompatibility alleles HLA-B*57 or HLA-B*27 (ref. 3). These alleles remain by far the most robust associations with low concentrations of plasma virus, yet the mechanism of control in these individuals is not entirely clear. Here we vaccinate Indian rhesus macaques that express Mamu-B*08, an animal model for HLA-B*27-mediated elite control, with three Mamu-B*08-restricted CD8+ T-cell epitopes, and demonstrate that these vaccinated animals control replication of the highly pathogenic clonal simian immunodeficiency virus (SIV) mac239 virus. High frequencies of CD8+ T cells against these Vif and Nef epitopes in the blood, lymph nodes and colon were associated with viral control. Moreover, the frequency of the CD8+ T-cell response against the Nef RL10 epitope (Nef amino acids 137–146) correlated significantly with reduced acute phase viraemia. Finally, two of the eight vaccinees lost control of viral replication in the chronic phase, concomitant with escape in all three targeted epitopes, further implicating these three CD8+ T-cell responses in the control of viral replication. Our findings indicate that narrowly targeted vaccine-induced virus-specific CD8+ T-cell responses can control replication of the AIDS virus.
Journal of Virology | 2010
Myrna C. Bonaldo; Mauricio A. Martins; Richard Rudersdorf; Philip A. Mudd; Jonah B. Sacha; Shari M. Piaskowski; Patrícia Cristina da Costa Neves; Marlon G. Veloso de Santana; Lara Vojnov; Saverio Capuano; Eva G. Rakasz; Nancy A. Wilson; John Fulkerson; Jerald C. Sadoff; David I. Watkins; Ricardo Galler
ABSTRACT Here we describe a novel vaccine vector for expressing human immunodeficiency virus (HIV) antigens. We show that recombinant attenuated yellow fever vaccine virus 17D expressing simian immunodeficiency virus SIVmac239 Gag sequences can be used as a vector to generate SIV-specific CD8+ T-cell responses in the rhesus macaque. Priming with recombinant BCG expressing SIV antigens increased the frequency of these SIV-specific CD8+ T-cell responses after recombinant YF17D boosting. These recombinant YF17D-induced SIV-specific CD8+ T cells secreted several cytokines, were largely effector memory T cells, and suppressed viral replication in CD4+ T cells.
Journal of Virology | 2012
Lara Vojnov; Mauricio A. Martins; Alexander T. Bean; Marlon G. Veloso de Santana; Jonah B. Sacha; Nancy A. Wilson; Myrna C. Bonaldo; Ricardo Galler; Mario Stevenson; David I. Watkins
ABSTRACT Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) primarily infect activated CD4+ T cells but can infect macrophages. Surprisingly, ex vivo tetramer-sorted SIV-specific CD8+ T cells that eliminated and suppressed viral replication in SIV-infected CD4+ T cells failed to do so in SIV-infected macrophages. It is possible, therefore, that while AIDS virus-infected macrophages constitute only a small percentage of all virus-infected cells, they may be relatively resistant to CD8+ T cell-mediated lysis and continue to produce virus over long periods of time.
Vaccine | 2010
Patrícia Cristina da Costa Neves; Richard Rudersdorf; Ricardo Galler; Myrna C. Bonaldo; Marlon G. Veloso de Santana; Philip A. Mudd; Mauricio A. Martins; Eva G. Rakasz; Nancy A. Wilson; David I. Watkins
The yellow fever 17D (YF-17D) vaccine is one of the most efficacious vaccines developed to date. Interestingly, vaccination with YF-17D induces IFN-γ production early after vaccination (days 5-7) before the development of classical antigen-specific CD8(+) and CD4(+) T cell responses. Here we investigated the cellular source of this early IFN-γ production. At days 5 and 7 post-vaccination activated CD8(+) gamma-delta TCR T cells produced IFN-γ and TNF-α. Activated CD4(+) T cells produced IFN-γ and TNF-α at day 7 post-vaccination. This early IFN-γ production was also induced after vaccination with recombinant YF-17D (rYF-17D), but was not observed after recombinant Adenovirus type 5 (rAd5) vaccination. Early IFN-γ production, therefore, might be an important aspect of yellow fever vaccination.
Journal of Virology | 2015
Mauricio A. Martins; Damien C. Tully; Michael A. Cruz; Karen A. Power; Marlon G. Veloso de Santana; David J. Bean; Colin B. Ogilvie; Rujuta Gadgil; Noemia S. Lima; Diogo M. Magnani; Keisuke Ejima; David B. Allison; Michael Piatak; John D. Altman; Christopher L. Parks; Eva G. Rakasz; Saverio Capuano; Ricardo Galler; Myrna C. Bonaldo; Jeffrey D. Lifson; Todd M. Allen; David I. Watkins
ABSTRACT Certain major histocompatibility complex class I (MHC-I) alleles (e.g., HLA-B*27) are enriched among human immunodeficiency virus type 1 (HIV-1)-infected individuals who suppress viremia without treatment (termed “elite controllers” [ECs]). Likewise, Mamu-B*08 expression also predisposes rhesus macaques to control simian immunodeficiency virus (SIV) replication. Given the similarities between Mamu-B*08 and HLA-B*27, SIV-infected Mamu-B*08 + animals provide a model to investigate HLA-B*27-mediated elite control. We have recently shown that vaccination with three immunodominant Mamu-B*08-restricted epitopes (Vif RL8, Vif RL9, and Nef RL10) increased the incidence of elite control in Mamu-B*08 + macaques after challenge with the pathogenic SIVmac239 clone. Furthermore, a correlate analysis revealed that CD8+ T cells targeting Nef RL10 was correlated with improved outcome. Interestingly, this epitope is conserved between SIV and HIV-1 and exhibits a delayed and atypical escape pattern. These features led us to postulate that a monotypic vaccine-induced Nef RL10-specific CD8+ T-cell response would facilitate the development of elite control in Mamu-B*08 + animals following repeated intrarectal challenges with SIVmac239. To test this, we vaccinated Mamu-B*08 + animals with nef inserts in which Nef RL10 was either left intact (group 1) or disrupted by mutations (group 2). Although monkeys in both groups mounted Nef-specific cellular responses, only those in group 1 developed Nef RL10-specific CD8+ T cells. These vaccine-induced effector memory CD8+ T cells did not prevent infection. Escape variants emerged rapidly in the group 1 vaccinees, and ultimately, the numbers of ECs were similar in groups 1 and 2. High-frequency vaccine-induced CD8+ T cells focused on a single conserved epitope and therefore did not prevent infection or increase the incidence of elite control in Mamu-B*08 + macaques. IMPORTANCE Since elite control of chronic-phase viremia is a classic example of an effective immune response against HIV/SIV, elucidating the basis of this phenomenon may provide useful insights into how to elicit such responses by vaccination. We have previously established that vaccine-induced CD8+ T-cell responses against three immunodominant epitopes can increase the incidence of elite control in SIV-infected Mamu-B*08 + rhesus macaques—a model of HLA-B*27-mediated elite control. Here, we investigated whether a monotypic vaccine-induced CD8+ T-cell response targeting the conserved “late-escaping” Nef RL10 epitope can increase the incidence of elite control in Mamu-B*08 + monkeys. Surprisingly, vaccine-induced Nef RL10-specific CD8+ T cells selected for variants within days after infection and, ultimately, did not facilitate the development of elite control. Elite control is, therefore, likely to involve CD8+ T-cell responses against more than one epitope. Together, these results underscore the complexity and multidimensional nature of virologic control of lentivirus infection.
Immunogenetics | 2010
Philip A. Mudd; Shari M. Piaskowski; Patrícia Cristina da Costa Neves; Richard Rudersdorf; Holly L. Kolar; Christopher M. Eernisse; Kim L. Weisgrau; Marlon G. Veloso de Santana; Nancy A. Wilson; Myrna C. Bonaldo; Ricardo Galler; Eva G. Rakasz; David I. Watkins
The yellow fever vaccine 17D (YF17D) is one of the most effective vaccines. Its wide use and favorable safety profile make it a prime candidate for recombinant vaccines. It is believed that neutralizing antibodies account for a large measure of the protection afforded to YF17D-vaccinated individuals, however cytotoxic T lymphocyte (CTL) responses have been described in the setting of YF17D vaccination. YF17D is an ssRNA flavivirus that is translated as a full-length polyprotein, several domains of which pass into the lumen of the endoplasmic reticulum (ER). The processing and presentation machinery for MHC class I-restricted CTL responses favor cytoplasmic peptides that are transported into the ER by the transporter associated with antigen presentation proteins. In order to inform recombinant vaccine design, we sought to determine if YF17D-induced CTL responses preferentially targeted viral domains that remain within the cytoplasm. We performed whole YF17D proteome mapping of CTL responses in six Indian rhesus macaques vaccinated with YF17D using overlapping YF17D peptides. We found that the ER luminal E protein was the most immunogenic viral protein followed closely by the cytoplasmic NS3 and NS5 proteins. These results suggest that antigen processing and presentation in this model system is not preferentially affected by the subcellular location of the viral proteins that are the source of CTL epitopes. The data also suggest potential immunogenic regions of YF17D that could serve as the focus of recombinant T cell vaccine development.
PLOS ONE | 2013
Mauricio A. Martins; Myrna C. Bonaldo; Richard Rudersdorf; Shari M. Piaskowski; Eva G. Rakasz; Kim L. Weisgrau; Jessica Furlott; Christopher M. Eernisse; Marlon G. Veloso de Santana; Bertha Hidalgo; Thomas C. Friedrich; Maria J. Chiuchiolo; Christopher L. Parks; Nancy A. Wilson; David B. Allison; Ricardo Galler; David I. Watkins
An effective vaccine remains the best solution to stop the spread of human immunodeficiency virus (HIV). Cellular immune responses have been repeatedly associated with control of viral replication and thus may be an important element of the immune response that must be evoked by an efficacious vaccine. Recombinant viral vectors can induce potent T-cell responses. Although several viral vectors have been developed to deliver HIV genes, only a few have been advanced for clinical trials. The live-attenuated yellow fever vaccine virus 17D (YF17D) has many properties that make it an attractive vector for AIDS vaccine regimens. YF17D is well tolerated in humans and vaccination induces robust T-cell responses that persist for years. Additionally, methods to manipulate the YF17D genome have been established, enabling the generation of recombinant (r)YF17D vectors carrying genes from unrelated pathogens. Here, we report the generation of seven new rYF17D viruses expressing fragments of simian immunodeficiency virus (SIV)mac239 Gag, Nef, and Vif. Studies in Indian rhesus macaques demonstrated that these live-attenuated vectors replicated in vivo, but only elicited low levels of SIV-specific cellular responses. Boosting with recombinant Adenovirus type-5 (rAd5) vectors resulted in robust expansion of SIV-specific CD8+ T-cell responses, particularly those targeting Vif. Priming with rYF17D also increased the frequency of CD4+ cellular responses in rYF17D/rAd5-immunized macaques compared to animals that received rAd5 only. The effect of the rYF17D prime on the breadth of SIV-specific T-cell responses was limited and we also found evidence that some rYF17D vectors were more effective than others at priming SIV-specific T-cell responses. Together, our data suggest that YF17D – a clinically relevant vaccine vector – can be used to prime AIDS virus-specific T-cell responses in heterologous prime boost regimens. However, it will be important to optimize rYF17D-based vaccine regimens to ensure maximum delivery of all immunogens in a multivalent vaccine.
Journal of Virology | 2014
Mauricio A. Martins; Nancy A. Wilson; Shari M. Piaskowski; Kim L. Weisgrau; Jessica Furlott; Myrna C. Bonaldo; Marlon G. Veloso de Santana; Richard Rudersdorf; Eva G. Rakasz; Karen D. Keating; Maria J. Chiuchiolo; Michael Piatak; David B. Allison; Christopher L. Parks; Ricardo Galler; Jeffrey D. Lifson; David I. Watkins
ABSTRACT Broadly targeted cellular immune responses are thought to be important for controlling replication of human and simian immunodeficiency viruses (HIV and SIV). However, eliciting such responses by vaccination is complicated by immunodominance, the preferential targeting of only a few of the many possible epitopes of a given antigen. This phenomenon may be due to the coexpression of dominant and subdominant epitopes by the same antigen-presenting cell and may be overcome by distributing these sequences among several different vaccine constructs. Accordingly, we tested whether vaccinating rhesus macaques with “minigenes” encoding fragments of Gag, Vif, and Nef resulted in broadened cellular responses capable of controlling SIV replication. We delivered these minigenes through combinations of recombinant Mycobacterium bovis BCG (rBCG), electroporated recombinant DNA (rDNA) along with an interleukin-12 (IL-12)-expressing plasmid (EP rDNA plus pIL-12), yellow fever vaccine virus 17D (rYF17D), and recombinant adenovirus serotype 5 (rAd5). Although priming with EP rDNA plus pIL-12 increased the breadth of vaccine-induced T-cell responses, this effect was likely due to the improved antigen delivery afforded by electroporation rather than modulation of immunodominance. Indeed, Mamu-A*01 + vaccinees mounted CD8+ T cells directed against only one subdominant epitope, regardless of the vaccination regimen. After challenge with SIVmac239, vaccine efficacy was limited to a modest reduction in set point in some of the groups and did not correlate with standard T-cell measurements. These findings suggest that broad T-cell responses elicited by conventional vectors may not be sufficient to substantially contain AIDS virus replication. IMPORTANCE Immunodominance poses a major obstacle to the generation of broadly targeted, HIV-specific cellular responses by vaccination. Here we attempted to circumvent this phenomenon and thereby broaden the repertoire of SIV-specific cellular responses by vaccinating rhesus macaques with minigenes encoding fragments of Gag, Vif, and Nef. In contrast to previous mouse studies, this strategy appeared to minimally affect monkey CD8+ T-cell immundominance hierarchies, as seen by the detection of only one subdominant epitope in Mamu-A*01 + vaccinees. This finding underscores the difficulty of inducing subdominant CD8+ T cells by vaccination and demonstrates that strategies other than gene fragmentation may be required to significantly alter immunodominance in primates. Although some of the regimens tested here were extremely immunogenic, vaccine efficacy was limited to a modest reduction in set point viremia after challenge with SIVmac239. No correlates of protection were identified. These results reinforce the notion that vaccine immunogenicity does not predict control of AIDS virus replication.
PLOS ONE | 2011
Lara Vojnov; Mauricio A. Martins; Jorge R. Almeida; Zachary Ende; Eva G. Rakasz; Matthew R. Reynolds; Enrique J. León; Kim L. Weisgrau; Benjamin J. Burwitz; Joy M. Folkvord; Marlon G. Veloso de Santana; Patrícia Cristina da Costa Neves; Elizabeth Connick; Pamela J. Skinner; Emma Gostick; David H. O'Connor; Nancy A. Wilson; Myrna C. Bonaldo; Ricardo Galler; David A. Price; Danny C. Douek; David I. Watkins
Several lines of evidence suggest that HIV/SIV-specific CD8+ T cells play a critical role in the control of viral replication. Recently we observed high levels of viremia in Indian rhesus macaques vaccinated with a segment of SIVmac239 Gag (Gag45–269) that were subsequently infected with SIVsmE660. These seven Mamu-A*01+ animals developed CD8+ T cell responses against an immunodominant epitope in Gag, GagCM9, yet failed to control virus replication. We carried out a series of immunological and virological assays to understand why these Gag-specific CD8+ T cells could not control virus replication in vivo. GagCM9-specific CD8+ T cells from all of the animals were multifunctional and were found in the colonic mucosa. Additionally, GagCM9-specific CD8+ T cells accessed B cell follicles, the primary residence of SIV-infected cells in lymph nodes, with effector to target ratios between 20–250 GagCM9-specific CD8+ T cells per SIV-producing cell. Interestingly, vaccinated animals had few public TCR clonotypes within the GagCM9-specific CD8+ T cell population pre- and post-infection. The number of public TCR clonotypes expressed by GagCM9-specific CD8+ T cells post-infection significantly inversely correlated with chronic phase viral load. It is possible that these seven animals failed to control viral replication because of the narrow TCR repertoire expressed by the GagCM9-specific CD8+ T cell population elicited by vaccination and infection.
Memorias Do Instituto Oswaldo Cruz | 2012
Gisela Freitas Trindade; Marlon G. Veloso de Santana; Juliana Ribeiro dos Santos; Ricardo Galler; Myrna C. Bonaldo
The flaviviral envelope proteins, E protein and precursor membrane protein, are mainly associated with the endoplasmic reticulum (ER) through two transmembrane (TM) domains that are exposed to the luminal face of this compartment. Their retention is associated with the viral assembly process. ER-retrieval motifs were mapped at the carboxy terminus of these envelope proteins. A recombinant yellow fever (YF) 17D virus expressing the reporter green fluorescent protein (GFP) with the stem-anchor (SA) region of E protein fused to its carboxy terminus was subjected to distinct genetic mutations in the SA sequence to investigate their effect on ER retention. Initially, we introduced progressive deletions of the stem elements (H1, CS and H2). In a second set of mutants, the effect of a length increase for the first TM anchor region was evaluated either by replacing it with the longer TM of human LAMP-1 or by the insertion of the VALLLVA sequence into its carboxy terminus. We did not detect any effect on the GFP localisation in the cell, which remained associated with the ER. Further studies should be undertaken to elucidate the causes of the ER retention of recombinant proteins expressed at the intergenic E/NS1 region of the YF 17D virus polyprotein.