Marlon Stoeckius
Max Delbrück Center for Molecular Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marlon Stoeckius.
Cell | 2014
Anita Öst; Adelheid Lempradl; Eduard Casas; Melanie Weigert; Theodor Tiko; Merdin Deniz; Lorena Pantano; Ulrike Boenisch; Pavel M. Itskov; Marlon Stoeckius; Marius Ruf; Nikolaus Rajewsky; Gunter Reuter; Nicola Iovino; Carlos Ribeiro; Mattias Alenius; Steffen Heyne; Tanya Vavouri; J. Andrew Pospisilik
The global rise in obesity has revitalized a search for genetic and epigenetic factors underlying the disease. We present a Drosophila model of paternal-diet-induced intergenerational metabolic reprogramming (IGMR) and identify genes required for its encoding in offspring. Intriguingly, we find that as little as 2 days of dietary intervention in fathers elicits obesity in offspring. Paternal sugar acts as a physiological suppressor of variegation, desilencing chromatin-state-defined domains in both mature sperm and in offspring embryos. We identify requirements for H3K9/K27me3-dependent reprogramming of metabolic genes in two distinct germline and zygotic windows. Critically, we find evidence that a similar system may regulate obesity susceptibility and phenotype variation in mice and humans. The findings provide insight into the mechanisms underlying intergenerational metabolic reprogramming and carry profound implications for our understanding of phenotypic variation and evolution.
Molecular Cell | 2011
Anna-Carina Jungkamp; Marlon Stoeckius; D. Mecenas; Dominic Grün; Guido Mastrobuoni; Stefan Kempa; Nikolaus Rajewsky
Animal mRNAs are regulated by hundreds of RNA binding proteins (RBPs). The identification of RBP targets is crucial for understanding their function. A recent method, PAR-CLIP, uses photoreactive nucleosides to crosslink RBPs to target RNAs in cells prior to immunoprecipitation. Here, we establish iPAR-CLIP (in vivo PAR-CLIP) to determine, at nucleotide resolution, transcriptome-wide binding sites of GLD-1, a conserved, germline-specific translational repressor in C. elegans. We identified 439 reproducible target mRNAs and demonstrate an excellent dynamic range of target detection by iPAR-CLIP. Upon GLD-1 knockdown, protein but not mRNA expression of the 439 targets was specifically upregulated, demonstrating functionality. Finally, we discovered strongly conserved GLD-1 binding sites near the start codon of target genes. These sites are functional in vitro and likely confer strong repression in vivo. We propose that GLD-1 interacts with the translation machinery near the start codon, a so-far-unknown mode of gene regulation in eukaryotes.
Nature Methods | 2017
Marlon Stoeckius; Christoph Hafemeister; William Stephenson; Brian Houck-Loomis; Pratip K. Chattopadhyay; Harold Swerdlow; Rahul Satija; Peter Smibert
High-throughput single-cell RNA sequencing has transformed our understanding of complex cell populations, but it does not provide phenotypic information such as cell-surface protein levels. Here, we describe cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq), a method in which oligonucleotide-labeled antibodies are used to integrate cellular protein and transcriptome measurements into an efficient, single-cell readout. CITE-seq is compatible with existing single-cell sequencing approaches and scales readily with throughput increases.
Nature Methods | 2009
Marlon Stoeckius; Jonas Maaskola; Teresa Colombo; Hans Peter Rahn; Marc R. Friedländer; Na Li; Wei Chen; Fabio Piano; Nikolaus Rajewsky
Caenorhabditis elegans is one of the most prominent model systems for embryogenesis, but collecting many precisely staged embryos has been impractical. Thus, early C. elegans embryogenesis has not been amenable to most high-throughput genomics or biochemistry assays. To overcome this problem, we devised a method to collect staged C. elegans embryos by fluorescence-activated cell sorting (eFACS). In a proof-of-principle experiment, we found that a single eFACS run routinely yielded tens of thousands of almost perfectly staged 1-cell stage embryos. As the earliest embryonic events are driven by posttranscriptional regulation, we combined eFACS with second-generation sequencing to profile the embryonic expression of small, noncoding RNAs. We discovered complex and orchestrated changes in the expression between and within almost all classes of small RNAs, including microRNAs and 26G-RNAs, during embryogenesis.
Cell Reports | 2014
Dominic Grün; Marieluise Kirchner; Nadine Thierfelder; Marlon Stoeckius; Matthias Selbach; Nikolaus Rajewsky
Spatiotemporal control of gene expression is crucial for development and subject to evolutionary changes. Although proteins are the final product of most genes, the developmental proteome of an animal has not yet been comprehensively defined, and the correlation between mRNA and protein abundance during development is largely unknown. Here, we globally measured and compared protein and mRNA expression changes during the life cycle of the nematodes C. elegans and C. briggsae, separated by ~30 million years of evolution. We observed that developmental mRNA and protein changes were highly conserved to a surprisingly similar degree but were poorly correlated within a species, suggesting important and widespread posttranscriptional regulation. Posttranscriptional control was particularly well conserved if mRNA fold changes were buffered on the protein level, indicating a predominant repressive function. Finally, among divergently expressed genes, we identified insulin signaling, a pathway involved in lifespan determination, as a putative target of adaptive evolution.
Developmental Biology | 2012
Jia L. Song; Marlon Stoeckius; Jonas Maaskola; Marc R. Friedländer; Nadezda A. Stepicheva; Celina E. Juliano; Svetlana Lebedeva; William A. Thompson; Nikolaus Rajewsky; Gary M. Wessel
microRNAs (miRNAs) are small noncoding RNAs that mediate post-transcriptional gene regulation and have emerged as essential regulators of many developmental events. The transcriptional network during early embryogenesis of the purple sea urchin, Strongylocentrotus purpuratus, is well described and can serve as an excellent model to test functional contributions of miRNAs in embryogenesis. We examined the loss of function phenotypes of major components of the miRNA biogenesis pathway. Inhibition of de novo synthesis of Drosha and Dicer in the embryo led to consistent developmental defects, a failure to gastrulate, and embryonic lethality, including changes in the steady state levels of transcription factors and signaling molecules involved in germ layer specification. We annotated and profiled small RNA expression from the ovary and several early embryonic stages by deep sequencing followed by computational analysis. miRNAs as well as a large population of putative piRNAs (piwi-interacting RNAs) had dynamic accumulation profiles through early development. Defects in morphogenesis caused by loss of Drosha could be rescued with four miRNAs. Taken together our results indicate that post-transcriptional gene regulation directed by miRNAs is functionally important for early embryogenesis and is an integral part of the early embryonic gene regulatory network in S. purpuratus.
The EMBO Journal | 2014
Marlon Stoeckius; Dominic Grün; Marieluise Kirchner; Salah Ayoub; Francesca Torti; Fabio Piano; Margareta Herzog; Matthias Selbach; Nikolaus Rajewsky
The oocyte‐to‐embryo transition (OET) is thought to be mainly driven by post‐transcriptional gene regulation. However, expression of both RNAs and proteins during the OET has not been comprehensively assayed. Furthermore, specific molecular mechanisms that regulate gene expression during OET are largely unknown. Here, we quantify and analyze transcriptome‐wide, expression of mRNAs and thousands of proteins in Caenorhabditis elegans oocytes, 1‐cell, and 2‐cell embryos. This represents a first comprehensive gene expression atlas during the OET in animals. We discovered a first wave of degradation in which thousands of mRNAs are cleared shortly after fertilization. Sequence analysis revealed a statistically highly significant presence of a polyC motif in the 3′ untranslated regions of most of these degraded mRNAs. Transgenic reporter assays demonstrated that this polyC motif is required and sufficient for mRNA degradation after fertilization. We show that orthologs of human polyC‐binding protein specifically bind this motif. Our data suggest a mechanism in which the polyC motif and binding partners direct degradation of maternal mRNAs. Our data also indicate that endogenous siRNAs but not miRNAs promote mRNA clearance during the OET.
The EMBO Journal | 2014
Marlon Stoeckius; Dominic Grün; Nikolaus Rajewsky
Development of the early embryo is thought to be mainly driven by maternal gene products and post‐transcriptional gene regulation. Here, we used metabolic labeling to show that RNA can be transferred by sperm into the oocyte upon fertilization. To identify genes with paternal expression in the embryo, we performed crosses of males and females from divergent Caenorhabditis elegans strains. RNA sequencing of mRNAs and small RNAs in the 1‐cell hybrid embryo revealed that about one hundred sixty paternal mRNAs are reproducibly expressed in the embryo and that about half of all assayed endogenous siRNAs and piRNAs are also of paternal origin. Together, our results suggest an unexplored paternal contribution to early development.
bioRxiv | 2017
Marlon Stoeckius; Shiwei Zheng; Brian Houck-Loomis; Stephanie Hao; Bertrand Yeung; Peter Smibert; Rahul Satija
Despite rapid developments in single cell sequencing technology, sample-specific batch effects, detection of cell doublets, and the cost of generating massive datasets remain outstanding challenges. Here, we introduce cell “hashing”, where oligo-tagged antibodies against ubiquitously expressed surface proteins are used to uniquely label cells from distinct samples, which can be subsequently pooled. By sequencing these tags alongside the cellular transcriptome, we can assign each cell to its sample of origin, and robustly identify doublets originating from multiple samples. We demonstrate our approach by pooling eight human PBMC samples on a single run of the 10x Chromium system, substantially reducing our per-cell costs for library generation. Cell “hashing” is inspired by, and complementary to, elegant multiplexing strategies based on genetic variation, which we also leverage to validate our results. We therefore envision that our approach will help to generalize the benefits of single cell multiplexing to diverse samples and experimental designs.
bioRxiv | 2017
Marlon Stoeckius; Christoph Hafemeister; William Stephenson; Brian Houck-Loomis; Harold Swerdlow; Rahul Satija; Peter Smibert
Recent high-throughput single-cell sequencing approaches have been transformative for understanding complex cell populations, but are unable to provide additional phenotypic information, such as protein levels of well-established cell-surface markers. Using oligonucleotide-labeled antibodies, we integrate measurements of cellular proteins and transcriptomes into an efficient, sequencing-based readout of single cells. This method is compatible with existing single-cell sequencing approaches and will readily scale as the throughput of these methods increase.