Marlys L. Houck
Zoological Society of San Diego
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marlys L. Houck.
Aging Cell | 2011
Nuno M.V. Gomes; Oliver A. Ryder; Marlys L. Houck; Suellen J. Charter; William Walker; Nicholas R. Forsyth; Steven N. Austad; Chris Venditti; Mark Pagel; Jerry W. Shay; Woodring E. Wright
Progressive telomere shortening from cell division (replicative aging) provides a barrier for human tumor progression. This program is not conserved in laboratory mice, which have longer telomeres and constitutive telomerase. Wild species that do/do not use replicative aging have been reported, but the evolution of different phenotypes and a conceptual framework for understanding their uses of telomeres is lacking. We examined telomeres/telomerase in cultured cells from > 60 mammalian species to place different uses of telomeres in a broad mammalian context. Phylogeny‐based statistical analysis reconstructed ancestral states. Our analysis suggested that the ancestral mammalian phenotype included short telomeres (< 20 kb, as we now see in humans) and repressed telomerase. We argue that the repressed telomerase was a response to a higher mutation load brought on by the evolution of homeothermy. With telomerase repressed, we then see the evolution of replicative aging. Telomere length inversely correlated with lifespan, while telomerase expression co‐evolved with body size. Multiple independent times smaller, shorter‐lived species changed to having longer telomeres and expressing telomerase. Trade‐offs involving reducing the energetic/cellular costs of specific oxidative protection mechanisms (needed to protect < 20 kb telomeres in the absence of telomerase) could explain this abandonment of replicative aging. These observations provide a conceptual framework for understanding different uses of telomeres in mammals, support a role for human‐like telomeres in allowing longer lifespans to evolve, demonstrate the need to include telomere length in the analysis of comparative studies of oxidative protection in the biology of aging, and identify which mammals can be used as appropriate model organisms for the study of the role of telomeres in human cancer and aging.
Nature Methods | 2011
Inbar Friedrich Ben-Nun; Susanne C. Montague; Marlys L. Houck; Ha T. Tran; Ibon Garitaonandia; Trevor R. Leonardo; Yu-Chieh Wang; Suellen J. Charter; Louise C. Laurent; Oliver A. Ryder; Jeanne F. Loring
For some highly endangered species there are too few reproductively capable animals to maintain adequate genetic diversity, and extraordinary measures are necessary to prevent extinction. We report generation of induced pluripotent stem cells (iPSCs) from two endangered species: a primate, the drill, Mandrillus leucophaeus and the nearly extinct northern white rhinoceros, Ceratotherium simum cottoni. iPSCs may eventually facilitate reintroduction of genetic material into breeding populations.
BMC Genomics | 2009
Michael N Romanov; Elaina M. Tuttle; Marlys L. Houck; William S. Modi; Leona G. Chemnick; Marisa L. Korody; Emily M Stremel Mork; Christie A Otten; Tanya Renner; Kenneth C. Jones; Sugandha Dandekar; Jeanette C. Papp; Yang Da; Nisc Comparative Sequencing Program; Eric D. Green; Vincent Magrini; Matthew Hickenbotham; Jarret Glasscock; Sean McGrath; Elaine R. Mardis; Oliver A. Ryder
BackgroundGenomic studies in non-domestic avian models, such as the California condor and white-throated sparrow, can lead to more comprehensive conservation plans and provide clues for understanding mechanisms affecting genetic variation, adaptation and evolution.Developing genomic tools and resources including genomic libraries and a genetic map of the California condor is a prerequisite for identification of candidate loci for a heritable embryonic lethal condition. The white-throated sparrow exhibits a stable genetic polymorphism (i.e. chromosomal rearrangements) associated with variation in morphology, physiology, and behavior (e.g., aggression, social behavior, sexual behavior, parental care).In this paper we outline the utility of these species as well as report on recent advances in the study of their genomes.ResultsGenotyping of the condor resource population at 17 microsatellite loci provided a better assessment of the current populations genetic variation. Specific New World vulture repeats were found in the condor genome. Using condor BAC library and clones, chicken-condor comparative maps were generated. A condor fibroblast cell line transcriptome was characterized using the 454 sequencing technology.Our karyotypic analyses of the sparrow in combination with other studies indicate that the rearrangements in both chromosomes 2m and 3a are complex and likely involve multiple inversions, interchromosomal linkage, and pleiotropy. At least a portion of the rearrangement in chromosome 2m existed in the common ancestor of the four North American species of Zonotrichia, but not in the one South American species, and that the 2m form, originally thought to be the derived condition, might actually be the ancestral one.ConclusionMining and characterization of candidate loci in the California condor using molecular genetic and genomic techniques as well as linkage and comparative genomic mapping will eventually enable the identification of carriers of the chondrodystrophy allele, resulting in improved genetic management of this disease.In the white-throated sparrow, genomic studies, combined with ecological data, will help elucidate the basis of genic selection in a natural population. Morphs of the sparrow provide us with a unique opportunity to study intraspecific genomic differences, which have resulted from two separate yet linked evolutionary trajectories. Such results can transform our understanding of evolutionary and conservation biology.
Chromosome Research | 2008
Vladimir A. Trifonov; Roscoe Stanyon; Anastasia I. Nesterenko; Beiyuan Fu; Polina L. Perelman; Patricia C. M. O’Brien; Gary Stone; Nadezhda V. Rubtsova; Marlys L. Houck; Terence J. Robinson; Malcolm A. Ferguson-Smith; Gauthier Dobigny; Alexander S. Graphodatsky; Fengtang Yang
The order Perissodactyla, the group of odd-toed ungulates, includes three extant families: Equidae, Tapiridae, and Rhinocerotidae. The extremely rapid karyotypic diversification in perissodactyls has so far prevented the establishment of genome-wide homology maps between these three families by traditional cytogenetic approaches. Here we report the first genome-wide comparative chromosome maps of African rhinoceroses, four tapir species, four equine species, and humans. These maps were established by multidirectional chromosome painting, with paint probes derived from flow-sorted chromosomes of Equus grevyi, Tapirus indicus, and Ceratotherium simum as well as painting probes from horse and human. The Malayan tapir (Tapirus indicus), Baird’s tapir (T. bairdii), mountain tapir (T. pinchaque), lowland tapir (T. terrestris), and onager (E. hemionus onager), were studied by cross-species chromosome painting for the first time. Our results, when integrated with previously published comparative chromosome maps of the other perissodactyl species, have enabled the reconstruction of perissodactyl, ceratomorph, and equid ancestral karyotypes, and the identification of the defining evolutionary chromosomal rearrangements along each lineage. Our results allow a more reliable estimate of the mode and tempo of evolutionary chromosomal rearrangements, revealing a striking switch between the slowly evolving ceratomorphs and extremely rapidly evolving equids.
International Journal of Primatology | 2004
Mireya I. Mayor; Julie Sommer; Marlys L. Houck; John R. Zaonarivelo; Colleen M Ingram; Stacia R. Engel; Edward E. Louis
Controversial taxonomic relationships within Propithecus have consistently made conservation and management decisions difficult. We present a multidisciplinary phylogenetic analysis of Propithecus supporting the elevation of 4 subspecies to specific status: P. diadema perrieri → P. perrieri, P. diadema candidus → P. candidus, P. diadema edwardsi → P. edwardsi, and P. verreauxi coquereli→P. coquereli; leaving P. diademadiadema as P. diadema and P. verreauxiverreauxi as P. verreauxi.
Cytogenetic and Genome Research | 2002
Terje Raudsepp; Marlys L. Houck; Patricia C. M. O'Brien; M. A. Ferguson-Smith; Oliver A. Ryder; Bhanu P. Chowdhary
The California condor is the largest flying bird in North America and belongs to a group of New World vultures. Recovering from a near fatal population decline, and currently with only 197 extant individuals, the species remains listed as endangered. Very little genetic information exists for this species, although sexing methods employing chromosome analysis or W-chromosome specific amplification is routinely applied for the management of this monomorphic species. Keeping in mind that genetic conditions like chondrodystrophy have been identified, preliminary steps were undertaken in this study to understand the genome organization of the condor. This included an extensive cytogenetic analysis that provided (i) a chromosome number of 80 (with a likelihood of an extra pair of microchromosomes), and (ii) information on the centromeres, telomeres and nucleolus organizer regions. Further, a comparison between condor and chicken macrochromosomes was obtained by using individual chicken chromosome specific paints 1–9 and Z and W on condor metaphase spreads. Except for chromosomes 4 and Z, each of the chicken (GGA) macrochromosomes painted a single condor (GCA) macrochromosome. GGA4 paint detected complete homology with two condor chromosomes, viz., GCA4 and GCA9 providing additional proof that the latter are ancestral chromosomes in the birds. The chicken Z chromosome showed correspondence with both Z and W in the condor. The homology suggests that the condor sex chromosomes have not completely differentiated during evolution, which is unlike the majority of the non-ratites studied up till now. Overall, the study provides detailed cytogenetic and basic comparative information on condor chromosomes. These findings significantly advance the effort to study the chondrodystrophy that is responsible for over ten percent mortality in the condor.
Chromosome Research | 1996
A. T. Kumamoto; S. J. Charter; Marlys L. Houck; M. Frahm
G- and C-banded karyotypes ofDamaliscus hunteri, D. lunatus andD. pygargus were compared using the standard karyotype ofBos taurus. Chromosomal complements were 2n=36 inD. lunatus jimela, 2n=38 inD. pygargus phillipsi andD. p. pygargus, and 2n=44 inD. hunteri. The fundamental number in all karyotypes was 60. Among the three species ofDamaliscus, seven autosomal pairs and the X chromosomes were conserved. Y-chromosome differences were attributed to heterochromatic additions or deletions. Banded karyotypes of the two subspecies ofD. pygargus exhibited complete homology. Chromosomal complements ofD. pygargus andD. lunatus differed by a simple centric fusion. However, karyotypes ofD. pygargus andD. lunatus differed fromD. hunteri by numerous centric fusions, several of which were related by monobrachial chain complexes. Between the karyotypes ofD. hunteri andD. pygargus orD. lunatus, there were two chain complexes, one involving five chromosomes (chain V) and the other involving 12 inpygargus (chain XII) or 13 inlunatus (chain XIII). There were also two simple centric fusions betweenD. hunteri andD. lunatus/D. pygargus; acrocentric chromosomes 13, 15, 20 and 22 inD. hunteri were fused as 13;15 and 20;22 inD. lunatus andD. pygargus.
GigaScience | 2012
Pamela By Wong; E. O. Wiley; Warren E. Johnson; Oliver A. Ryder; Stephen J. O’Brien; David Haussler; Klaus-Peter Koepfli; Marlys L. Houck; Polina L. Perelman; Gabriela Mastromonaco; Andrew C. Bentley; Byrappa Venkatesh; Ya-Ping Zhang; Robert W. Murphy; G Kcos
The recent rise in speed and efficiency of new sequencing technologies have facilitated high-throughput sequencing, assembly and analyses of genomes, advancing ongoing efforts to analyze genetic sequences across major vertebrate groups. Standardized procedures in acquiring high quality DNA and RNA and establishing cell lines from target species will facilitate these initiatives. We provide a legal and methodological guide according to four standards of acquiring and storing tissue for the Genome 10K Project and similar initiatives as follows: four-star (banked tissue/cell cultures, RNA from multiple types of tissue for transcriptomes, and sufficient flash-frozen tissue for 1 mg of DNA, all from a single individual); three-star (RNA as above and frozen tissue for 1 mg of DNA); two-star (frozen tissue for at least 700 μg of DNA); and one-star (ethanol-preserved tissue for 700 μg of DNA or less of mixed quality). At a minimum, all tissues collected for the Genome 10K and other genomic projects should consider each species’ natural history and follow institutional and legal requirements. Associated documentation should detail as much information as possible about provenance to ensure representative sampling and subsequent sequencing. Hopefully, the procedures outlined here will not only encourage success in the Genome 10K Project but also inspire the adaptation of standards by other genomic projects, including those involving other biota.
International Journal of Primatology | 2004
Francesca Bigoni; Marlys L. Houck; Oliver A. Ryder; Johannes Wienberg; Roscoe Stanyon
We mapped the chromosomal homology of Pygathrix namaeus (douc) with human and other primates by in situ hybridization of human chromosome paints. The synteny of 3 human chromosomes (1, 2, 19) is fragmented in the douc karyotype and the 23 human probes (autosomes plus X) provided 26 signals. There are associations between human chromosomes 14/15, 21/22, and 1/19. Human chromosomes 1 and 19 are divided in two segments and associated on douc chromosomes 8 and 10. The fragmentation and association of human chromosomes 1 and 19 is best explained as the result of a reciprocal translocation, which occurs in all documented Asian colobines studied, but not in the African species Colobus guereza. However, the homologs to douc chromosome 10 in all other Asian documented colobines show an additional pericentric inversion. Our results indicate that Pygathrix nemeus is karyologically the most conservative colobine species yet studied and that this species probably diverged early after the separation of Asian and African Colobinae. The data reinforce the monophyly of the Colobinae and their division into an African and an Asian clade.
Cytogenetic and Genome Research | 2003
J.L. Myka; T.L. Lear; Marlys L. Houck; Oliver A. Ryder; Ernest Bailey
Przewalski’s wild horse (E. przewalskii, EPR) has a diploid chromosome number of 2n = 66 while the domestic horse (E. caballus, ECA) has a diploid chromosome number of 2n = 64. Discussions about their phylogenetic relationship and taxonomic classification have hinged on comparisons of their skeletal morphology, protein and mitochondrial DNA similarities, their ability to produce fertile hybrid offspring, and on comparison of their chromosome morphology and banding patterns. Previous studies of GTG-banded karyotypes suggested that the chromosomes of both equids were homologous and the difference in chromosome number was due to a Robertsonian event involving two pairs of acrocentric chromosomes in EPR and one pair of metacentric chromosomes in ECA (ECA5). To determine which EPR chromosomes were homologous to ECA5 and to confirm the predicted chromosome homologies based on GTG banding, we constructed a comparative gene map between ECA and EPR by FISH mapping 46 domestic horse-derived BAC clones containing genes previously mapped to ECA chromosomes. The results indicated that all ECA and EPR chromosomes were homologous as predicted by GTG banding, but provide new information in that the EPR acrocentric chromosomes EPR23 and EPR24 were shown to be homologues of the ECA metacentric chromosome ECA5.