Marni E. Harris-White
University of California, Los Angeles
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marni E. Harris-White.
Neurobiology of Aging | 2001
Sally A. Frautschy; W. Hu; Peter Kim; Sheryl A. Miller; Teresa Chu; Marni E. Harris-White; Gregory M. Cole
Both oxidative damage and inflammation have been implicated in age-related neurodegenerative diseases including Alzheimers Disease (AD). The yellow curry spice, curcumin, has both antioxidant and anti-inflammatory activities which confer significant protection against neurotoxic and genotoxic agents. We used 22 month Sprague-Dawley (SD) rats to compare the effects of the conventional NSAID, ibuprofen, and curcumin for their ability to protect against amyloid beta-protein (Abeta)-induced damage. Lipoprotein carrier-mediated, intracerebroventricular infusion of Abeta peptides induced oxidative damage, synaptophysin loss, a microglial response and widespread Abeta deposits. Dietary curcumin (2000 ppm), but not ibuprofen, suppressed oxidative damage (isoprostane levels) and synaptophysin loss. Both ibuprofen and curcumin reduced microgliosis in cortical layers, but curcumin increased microglial labeling within and adjacent to Abeta-ir deposits. In a second group of middle-aged female SD rats, 500 ppm dietary curcumin prevented Abeta-infusion induced spatial memory deficits in the Morris Water Maze and post-synaptic density (PSD)-95 loss and reduced Abeta deposits. Because of its low side-effect profile and long history of safe use, curcumin may find clinical application for AD prevention.
Nature Neuroscience | 2006
Lixia Zhao; Qiu-Lan Ma; Frédéric Calon; Marni E. Harris-White; Fusheng Yang; Giselle P. Lim; Takashi Morihara; Oliver J. Ubeda; Surendra S. Ambegaokar; James E. Hansen; Richard H. Weisbart; Bruce Teter; Sally A. Frautschy; Greg M. Cole
Defects in dendritic spines are common to several forms of cognitive deficits, including mental retardation and Alzheimer disease. Because mutation of p21-activated kinase (PAK) can lead to mental retardation and because PAK-cofilin signaling is critical in dendritic spine morphogenesis and actin dynamics, we hypothesized that the PAK pathway is involved in synaptic and cognitive deficits in Alzheimer disease. Here, we show that PAK and its activity are markedly reduced in Alzheimer disease and that this is accompanied by reduced and redistributed phosphoPAK, prominent cofilin pathology and downstream loss of the spine actin-regulatory protein drebrin, which cofilin removes from actin. We found that β-amyloid (Aβ) was directly involved in PAK signaling deficits and drebrin loss in Aβ oligomer–treated hippocampal neurons and in the Appswe transgenic mouse model bearing a double mutation leading to higher Aβ production. In addition, pharmacological PAK inhibition in adult mice was sufficient to cause similar cofilin pathology, drebrin loss and memory impairment, consistent with a potential causal role of PAK defects in cognitive deficits in Alzheimer disease.
Neurobiology of Aging | 2005
Greg M. Cole; Giselle P. Lim; Fusheng Yang; Bruce Teter; Aynun N. Begum; Qiu-Lan Ma; Marni E. Harris-White; Sally A. Frautschy
Alzheimers disease (AD) and cardiovascular disease (CVD) are syndromes of aging that share analogous lesions and risk factors, involving lipoproteins, oxidative damage and inflammation. Unlike in CVD, in AD, sensitive biomarkers are unknown, and high-risk groups are understudied. To identify potential prevention strategies in AD, we have focused on pre-clinical models (transgenic and amyloid infusion models), testing dietary/lifestyle factors strongly implicated in reducing risk in epidemiological studies. Initially, we reported the impact of non-steroidal anti-inflammatory drugs (NSAIDs), notably ibuprofen, which reduced amyloid accumulation, but suppressed few inflammatory markers and without reducing oxidative damage. Safety concerns with chronic NSAIDs led to a screen of alternative NSAIDs and identification of the phenolic anti-inflammatory/anti-oxidant compound curcumin, the yellow pigment in turmeric that we found targeted multiple AD pathogenic cascades. The dietary omega-3 fatty acid, docosahexaenoic acid (DHA), also limited amyloid, oxidative damage and synaptic and cognitive deficits in a transgenic mouse model. Both DHA and curcumin have favorable safety profiles, epidemiology and efficacy, and may exert general anti-aging benefits (anti-cancer and cardioprotective.).
PLOS ONE | 2012
Minu K. Srivastava; Li Zhu; Marni E. Harris-White; Upendra K. Kar; Min Huang; Ming F. Johnson; Jay M. Lee; David Elashoff; Robert M. Strieter; Steven M. Dubinett; Sherven Sharma
Background Myeloid derived suppressor cells (MDSC) are important regulators of immune responses. We evaluated the mechanistic role of MDSC depletion on antigen presenting cell (APC), NK, T cell activities and therapeutic vaccination responses in murine models of lung cancer. Principal Findings Individual antibody mediated depletion of MDSC (anti-Gr1 or anti-Ly6G) enhanced the antitumor activity against lung cancer. In comparison to controls, MDSC depletion enhanced the APC activity and increased the frequency and activity of the NK and T cell effectors in the tumor. Compared to controls, the anti-Gr1 or anti-Ly6G treatment led to increased: (i) CD8 T cells, (ii) NK cells, (iii) CD8 T or NK intracytoplasmic expression of IFNγ, perforin and granzyme (iv) CD3 T cells expressing the activation marker CD107a and CXCR3, (v) reduced CD8 T cell IL-10 production in the tumors (vi) reduced tumor angiogenic (VEGF, CXCL2, CXCL5, and Angiopoietin1&2) but enhanced anti-angiogenic (CXCL9 and CXCL10) expression and (vii) reduced tumor staining of endothelial marker Meca 32. Immunocytochemistry of tumor sections showed reduced Gr1 expressing cells with increased CD3 T cell infiltrates in the anti-Gr1 or anti-Ly6G groups. MDSC depletion led to a marked inhibition in tumor growth, enhanced tumor cell apoptosis and reduced migration of the tumors from the primary site to the lung compared to controls. Therapeutic vaccination responses were enhanced in vivo following MDSC depletion with 50% of treated mice completely eradicating established tumors. Treated mice that rejected their primary tumors acquired immunological memory against a secondary tumor challenge. The remaining 50% of mice in this group had 20 fold reductions in tumor burden compared to controls. Significance Our data demonstrate that targeting MDSC can improve antitumor immune responses suggesting a broad applicability of combined immune based approaches against cancer. This multifaceted approach may prove useful against tumors where MDSC play a role in tumor immune evasion.
Journal of Neuroscience Research | 2006
Qiu-Lan Ma; Giselle P. Lim; Marni E. Harris-White; Fusheng Yang; Surendra S. Ambegaokar; Oliver J. Ubeda; Charles G. Glabe; Bruce Teter; Sally A. Frautschy; Greg M. Cole
Although active and passive immunization against the β‐amyloid peptide (Aβ) of amyloid plaque‐bearing transgenic mice markedly reduces amyloid plaque deposition and improves cognition, the mechanisms of neuroprotection and impact on toxic oligomer species are not understood. We demonstrate that compared to control IgG2b, passive immunization with intracerebroventricular (icv) anti‐Aβ (1–15) antibody into the AD HuAPPsw (Tg2576) transgenic mouse model reduced specific oligomeric forms of Aβ, including the dodecamers that correlate with cognitive decline. Interestingly, the reduction of soluble Aβ oligomers, but not insoluble Aβ, significantly correlated with reduced τ phosphorylation by glycogen synthase kinase‐3β (GSK‐3β), a major τ kinase implicated previously in mediating Aβ toxicity. A conformationally‐directed antibody against amyloid oligomers (larger than tetramer) also reduced Aβ oligomer‐induced activation of GSK3β and protected human neuronal SH‐SY5Y cells from Aβ oligomer‐induced neurotoxicity, supporting a role for Aβ oligomers in human τ kinase activation. These data suggest that antibodies that are highly specific for toxic oligomer subspecies may reduce toxicity via reduction of GSK‐3β, which could be an important strategy for Alzheimers disease (AD) therapeutics.
Journal of Neurochemistry | 2007
Qiu-Lan Ma; Marni E. Harris-White; Oliver J. Ubeda; Mychica Simmons; Walter Beech; Giselle P. Lim; Bruce Teter; Sally A. Frautschy; Greg M. Cole
Extracellular‐signal regulated kinase (ERK) signaling is critical for memory and tightly regulated by acute environmental stimuli. In Alzheimer disease transgenic models, active ERK is shown to first be increased, then later reduced, but whether these baseline changes reflect disruptions in ERK signaling is less clear. We investigated the influence of the familial Alzheimer’s disease transgene APPsw and β‐amyloid peptide (Aβ) immunoneutralization on cannulation injury‐associated (i.c.v. infusion) ERK activation. At both 12 and 22 months of age, the trauma‐associated activation of ERK observed in Tg− mice was dramatically attenuated in Tg+. In cortices of 22‐month‐old non‐infused mice, a reduction in ERK activation was observed in Tg+, relative to Tg− mice. Intracerebroventricular (i.c.v.) anti‐Aβ infusion significantly increased phosphorylated ERK, its substrate cAMP‐response element‐binding protein (CREB) and a downstream target, the NMDA receptor subunit. We also demonstrated that Aβ oligomer decreased active ERK and subsequently active CREB in human neuroblastoma cells, which could be prevented by oligomer immunoneutralization. Aβ oligomers also inhibited active ERK and CREB in primary neurons, in addition to reducing the downstream post‐synaptic protein NMDA receptor subunit. These effects were reversed by anti‐oligomer. Our data strongly support the existence of an APPsw transgene‐dependent and Aβ oligomer‐mediated defect in regulation of ERK activation.
Neuroscience | 1999
Bruce Teter; Marni E. Harris-White; Sally A. Frautschy; Greg M. Cole
A role for apolipoprotein E is implicated in regeneration of synaptic circuitry after neural injury. The in vitro mouse organotypic hippocampal slice culture system shows Timms stained mossy fiber sprouting into the dentate gyrus molecular layer in response to deafferentation of the entorhinal cortex. We show that cultures derived from apolipoprotein E knockout mice are defective in this sprouting response; specifically, they show no sprouting in the dorsal region of the dentate gyrus, yet retain sprouting in the ventral region. Dorsal but not ventral sprouting in cultures from C57B1/6J mice is increased 75% by treatment with 100 pM 17beta-estradiol; this response is blocked by both progesterone and tamoxifen. These results show that neuronal sprouting is increased by estrogen in the same region where sprouting is dependent on apolipoprotein E. Sprouting may be stimulated by estrogen through its up-regulation of apolipoprotein E expression leading to increased recycling of membrane lipids for use by sprouting neurons. Estrogen and apolipoprotein E may therefore interact in their modulation of both Alzheimers disease risk and recovery from CNS injury.
Immunotherapy | 2012
Minu K. Srivastava; Åsa Andersson; Li Zhu; Marni E. Harris-White; Jay M. Lee; Steven M. Dubinett; Sherven Sharma
Many tumors, including lung cancers, promote immune tolerance to escape host immune surveillance and facilitate tumor growth. Tumors utilize numerous pathways to inhibit immune responses, including the elaboration of immune-suppressive mediators such as PGE2, TGF-β, IL-10, VEGF, GM-CSF, IL-6, S100A8/A9 and SCF, which recruit and/or activate myeloid-derived suppressor cells (MDSCs). MDSCs, a subset of heterogeneous bone marrow-derived hematopoietic cells, are found in the peripheral blood of cancer patients and positively correlate to malignancy. Solid tumors contain MDSCs that maintain an immune-suppressive network in the tumor microenvironment. This review will focus on the interaction of tumors with MDSCs that lead to dysregulation of antigen presentation and T-cell activities in murine tumor models. Specific genetic signatures in lung cancer modulate the activities of MDSCs and impact tumor progression. Targeting MDSCs may have a long-term antitumor benefit and is at the forefront of anticancer therapeutic strategies.
Journal of Neuroinflammation | 2012
S P Gabbita; Minu K. Srivastava; Pirooz Eslami; Ming F. Johnson; Naomi Kobritz; David Tweedie; Frank P Zemlan; Sherven Sharma; Marni E. Harris-White
BackgroundChronic neuroinflammation is an important component of Alzheimer’s disease and could contribute to neuronal dysfunction, injury and loss that lead to disease progression. Multiple clinical studies implicate tumor necrosis factor-α as an inflammatory mediator of neurodegeneration in patients with Alzheimer’s because of elevated levels of this cytokine in the cerebrospinal fluid, hippocampus and cortex. Current Alzheimer’s disease interventions are symptomatic treatments with limited efficacy that do not address etiology. Thus, a critical need exists for novel treatments directed towards modifying the pathophysiology and progression.MethodsTo investigate the effect of early immune modulation on neuroinflammation and cognitive outcome, we treated triple transgenic Alzheimer’s disease mice (harboring PS1M146V, APPSwe, and tauP301L transgenes) with the small molecule tumor necrosis factor-α inhibitors, 3,6′-dithiothalidomide and thalidomide, beginning at four months of age. At this young age, mice do not exhibit plaque or tau pathology but do show mild intraneuronal amyloid beta protein staining and a robust increase in tumor necrosis factor-α. After 10 weeks of treatment, cognitive performance was assessed using radial arm maze and neuroinflammation was assessed using biochemical, stereological and flow cytometric endpoints.Results3,6′-dithiothalidomide reduced tumor necrosis factor-α mRNA and protein levels in the brain and improved working memory performance and the ratio of resting to reactive microglia in the hippocampus of triple transgenic mice.In comparison to non-transgenic controls, triple transgenic Alzheimer’s disease mice had increased total numbers of infiltrating peripheral monomyelocytic/granulocytic leukocytes with enhanced intracytoplasmic tumor necrosis factor-α, which was reduced after treatment with 3,6′-dithiothalidomide.ConclusionsThese results suggest that modulation of tumor necrosis factor-α with small molecule inhibitors is safe and effective with potential for the long-term prevention and treatment of Alzheimer’s disease.
Current Drug Targets - Cns & Neurological Disorders | 2005
Marni E. Harris-White; Sally A. Frautschy
This review will focus primarily on the role of the low density lipoprotein receptor-related protein (LRP-1) in neuronal synapse formation and function in Alzheimers Disease (AD). We review the role that its ligands may have in cognition or AD: apolipoprotein E (ApoE), alpha2-macroglobulin, Transforming Growth Factor-Beta (TGFbeta, Tissue Plasminogen Activator (tPA), insulin growth factor binding protein-3 (IGFBP-3), which all bind LRP-1 and apolipoprotein J (ApoJ), which is a ligand for LRP-2. After reviewing its role as a signaling receptor, we discuss the connection between LRP and the NMDA glutamate receptor via the post synaptic density 95 (PSD-95) neuronal scaffold protein and the implications it may have for memory and cognition. Finally, we discuss the evidence supporting a role for LRP in AD. Although the evidence for LRP as a genetic risk factor is weak, many of its ligands impose genetic risk, and have been implicated in AD pathogenic cascades. We discuss the role of LRP in amyloid precursor protein (APP) processing and production of beta-amyloid (Abeta. We identify LRP ligands that accelerate aggregation of toxic Abeta species. LRP mediates crucial pathways in AD pathogenesis such as Abeta clearance, Abeta uptake, intraneuronal Abeta accumulation and Abeta-associated neuron death. Interestingly, the TGFbeta -V receptor is LRP-1. Data show that one critical ligand TGFbeta2, associated with neurodegeneration in amyloid diseases, induces LRP expression in PC12 cells. Data from rodent infusion models demonstrate the impact of TGFbeta2 in modifying Abeta- induced Long Term Potentiation (LTP) responses, presynaptic proteins, lipid peroxidation, gliosis and staining for neuronal nuclei. The evidence supports a complex and significant role of LRP in cognition and AD.