Marshall G. Miller
Tufts University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marshall G. Miller.
Journal of Agricultural and Food Chemistry | 2012
Marshall G. Miller; Barbara Shukitt-Hale
Increased lifespans have led to population aging and brought attention to healthcare concerns associated with old age. A growing body of preclinical and clinical research has identified neurological benefits associated with the consumption of berry fruits. In addition to their now well-known antioxidant effects, dietary supplementation with berry fruits also has direct effects on the brain. Intake of these fruits may help to prevent age-related neurodegeneration and resulting changes in cognitive and motor function. In cell and animal models, berry fruits mediate signaling pathways involved in inflammation and cell survival in addition to enhancing neuroplasticity, neurotransmission, and calcium buffering, all of which lead to attenuation of age- and pathology-related deficits in behavior. Recent clinical trials have extended these antioxidant, anti-inflammatory, and cognition-sparing effects to humans. This paper reviews recent evidence for the beneficial signaling effects of berry fruits on the brain and behavior.
Journal of Nutrition | 2014
Shibu M. Poulose; Marshall G. Miller; Barbara Shukitt-Hale
Because of the combination of population growth and population aging, increases in the incidence of chronic neurodegenerative disorders have become a societal concern, both in terms of decreased quality of life and increased financial burden. Clinical manifestation of many of these disorders takes years, with the initiation of mild cognitive symptoms leading to behavioral problems, dementia and loss of motor functions, the need for assisted living, and eventual death. Lifestyle factors greatly affect the progression of cognitive decline, with high-risk behaviors including unhealthy diet, lack of exercise, smoking, and exposure to environmental toxins leading to enhanced oxidative stress and inflammation. Although there exists an urgent need to develop effective treatments for age-related cognitive decline and neurodegenerative disease, prevention strategies have been underdeveloped. Primary prevention in many of these neurodegenerative diseases could be achieved earlier in life by consuming a healthy diet, rich in antioxidant and anti-inflammatory phytochemicals, which offers one of the most effective and least expensive ways to address the crisis. English walnuts (Juglans regia L.) are rich in numerous phytochemicals, including high amounts of polyunsaturated fatty acids, and offer potential benefits to brain health. Polyphenolic compounds found in walnuts not only reduce the oxidant and inflammatory load on brain cells but also improve interneuronal signaling, increase neurogenesis, and enhance sequestration of insoluble toxic protein aggregates. Evidence for the beneficial effects of consuming a walnut-rich diet is reviewed in this article.
Advances in Nutrition | 2017
Shibu M. Poulose; Marshall G. Miller; Tammy Scott; Barbara Shukitt-Hale
Adult neurogenesis, a complex process by which stem cells in the hippocampal brain region differentiate and proliferate into new neurons and other resident brain cells, is known to be affected by many intrinsic and extrinsic factors, including diet. Neurogenesis plays a critical role in neural plasticity, brain homeostasis, and maintenance in the central nervous system and is a crucial factor in preserving the cognitive function and repair of damaged brain cells affected by aging and brain disorders. Intrinsic factors such as aging, neuroinflammation, oxidative stress, and brain injury, as well as lifestyle factors such as high-fat and high-sugar diets and alcohol and opioid addiction, negatively affect adult neurogenesis. Conversely, many dietary components such as curcumin, resveratrol, blueberry polyphenols, sulforaphane, salvionic acid, polyunsaturated fatty acids (PUFAs), and diets enriched with polyphenols and PUFAs, as well as caloric restriction, physical exercise, and learning, have been shown to induce neurogenesis in adult brains. Although many of the underlying mechanisms by which nutrients and dietary factors affect adult neurogenesis have yet to be determined, nutritional approaches provide promising prospects to stimulate adult neurogenesis and combat neurodegenerative diseases and cognitive decline. In this review, we summarize the evidence supporting the role of nutritional factors in modifying adult neurogenesis and their potential to preserve cognitive function during aging.
Nutritional Neuroscience | 2017
Amanda N. Carey; Marshall G. Miller; Derek R. Fisher; Donna F. Bielinski; Casey K. Gilman; Shibu M. Poulose; Barbara Shukitt-Hale
Objectives: The present study was carried out to determine if lyophilized açaí fruit pulp (genus, Euterpe), rich in polyphenols and other bioactive antioxidant and anti-inflammatory phytochemicals, is efficacious in reversing age-related cognitive deficits in aged rats. Methods: The diets of 19-month-old Fischer 344 rats were supplemented for 8 weeks with 2% Euterpe oleracea (EO), Euterpe precatoria (EP), or a control diet. Rats were tested in the Morris water maze and then blood serum from the rats was used to assess inflammatory responses of BV-2 microglial cells. Results: After 8 weeks of dietary supplementation with 2% EO or EP, rats demonstrated improved working memory in the Morris water maze, relative to controls; however, only the EO diet improved reference memory. BV-2 microglial cells treated with blood serum collected from EO-fed rats produced less nitric oxide (NO) than control-fed rats. Serum from both EO- and EP-fed rats reduced tumor necrosis factor-alpha (TNF-α). There is a relationship between performance in the water maze and the production of NO and TNF-α by serum-treated BV-2 cells, such that serum from rats with better performance was more protective against inflammatory signaling. Discussion: Protection of memory during aging by supplementation of lyophilized açaí fruit pulp added to the diet may result from its ability to influence antioxidant and anti-inflammatory signaling.
Experimental Gerontology | 2017
Marshall G. Miller; Nopporn Thangthaeng; Shibu M. Poulose; Barbara Shukitt-Hale
&NA; Population aging is leading to an increase in the incidence of age‐related cognitive dysfunction and, with it, the health care burden of caring for older adults. Epidemiological studies have shown that consumption of fruits, nuts, and vegetables is positively associated with cognitive ability; however, these foods, which contain a variety of neuroprotective phytochemicals, are widely under‐consumed. Surprisingly few studies have investigated the effects of individual plant foods on cognitive health but recent clinical trials have shown that dietary supplementation with individual foods, or switching to a diet rich in several of these foods, can improve cognitive ability. While additional research is needed, increasing fruit, nut, and vegetable intake may be an effective strategy to prevent or delay the onset of cognitive dysfunction during aging. HighlightsPopulation aging is increasing the incidence of age‐related cognitive dysfunction.Many fruits, nuts, and vegetables are neuroprotective yet widely under‐consumed.Intake of these foods is positively associated with cognitive ability.Dietary supplementation with these foods can improve cognitive ability.Increasing fruit, nut, and vegetable intake may forestall cognitive dysfunction.
Neuromolecular Medicine | 2016
Nopporn Thangthaeng; Shibu M. Poulose; Marshall G. Miller; Barbara Shukitt-Hale
Advanced glycation end products (AGEs) are naturally occurring macromolecules that are formed in vivo by the non-enzymatic modification of proteins, lipids, or nucleic acids by sugar, even in the absence of hyperglycemia. In the diet, AGEs are found in animal products, and additional AGEs are produced when those foods are cooked at high temperatures. Studies have linked AGEs to various age-related physiological changes, including wrinkles, diabetic complications, and neurodegenerative disease, including Alzheimer’s disease. Dietary berry fruits have been shown to reduce the severity or slow the progression of many physiological changes and disease pathologies that accompany aging. Emerging evidence has shown that the phytochemicals found in berry fruits exhibit anti-glycative activity. In this review, we briefly summarize the current evidence supporting the neuroprotective anti-glycative activity of berry fruits and their potential to preserve cognitive function during aging.
Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2017
Marshall G. Miller; Nopporn Thangthaeng; Barbara Shukitt-Hale
Frailty is a clinical syndrome that is increasingly prevalent during aging. Frailty involves the confluence of reduced strength, speed, physical activity, and endurance and is associated with adverse health outcomes. The present study adapts existing clinical and preclinical indices of frailty to the Fischer (F344) rat. Male F344 rats (n = 133; 17 mo) completed a battery of behavioral tasks, including forelimb wire suspension (strength), rotarod (speed), open field (physical activity), and inclined screen (endurance). Rats that performed poorly (lowest quintile) on two tasks were considered mildly frail (17.29%, n = 23), and rats that performed poorly on 3-4 tasks were considered frail (2.26%, n = 3). Logistic regression of 100-day survival revealed that mildly frail rats were 3.8 times and frail rats were 27.5 times more likely to die during that period than nonfrail rats (p = .038; 95% confidence interval: 2.030, 372.564). The selected criterion tests, cutoff points, and index provide a potential tool for identifying frailty in aged F344 rats, which is consistent with existing frailty indices for humans and mice.
Nutrition Research | 2015
Nopporn Thangthaeng; Marshall G. Miller; Stacey M. Gomes; Barbara Shukitt-Hale
Decline in brain function during normal aging is partly due to the long-term effects of oxidative stress and inflammation. Several fruits and vegetables have been shown to possess antioxidant and anti-inflammatory properties. The present study investigated the effects of dietary mushroom intervention on mobility and memory in aged Fischer 344 rats. We hypothesized that daily supplementation of mushroom would have beneficial effects on behavioral outcomes in a dose-dependent manner. Rats were randomly assigned to receive a diet containing either 0%, 0.5%, 1%, 2%, or 5% lyophilized white button mushroom (Agaricus bisporus); after 8 weeks on the diet, a battery of behavioral tasks was given to assess balance, coordination, and cognition. Rats on the 2% or 5% mushroom-supplemented diet consumed more food, without gaining weight, than rats in the other diet groups. Rats in the 0.5% and 1% group stayed on a narrow beam longer, indicating an improvement in balance. Only rats on the 0.5% mushroom diet showed improved performance in a working memory version of the Morris water maze. When taken together, the most effective mushroom dose that produced improvements in both balance and working memory was 0.5%, equivalent to about 1.5 ounces of fresh mushrooms for humans. Therefore, the results suggest that the inclusion of mushroom in the daily diet may have beneficial effects on age-related deficits in cognitive and motor function.
Life sciences in space research | 2018
Bernard M. Rabin; Kirsty L. Carrihill-Knoll; Marshall G. Miller; Barbara Shukitt-Hale
Exposure to particles of high energy and charge (HZE particles) can produce decrements in cognitive performance. A series of experiments exposing rats to different HZE particles was run to evaluate whether the performance decrement was dependent on the age of the subject at the time of irradiation. Fischer 344 rats that were 2-, 11- and 15/16-months of age were exposed to 16O, 48Ti, or 4He particles at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. As previously observed following exposure to 56Fe particles, exposure to the higher LET 48Ti particles produced a disruption of cognitive performance at a lower dose in the older subjects compared to the dose needed to disrupt performance in the younger subjects. There were no age related changes in the dose needed to produce a disruption of cognitive performance following exposure to lower LET 16O or 4He particles. The threshold for the rats exposed to either 16O or 4He particles was similar at all ages. Because the 11- and 15-month old rats are more representative of the age of astronauts (45-55 years old) the present results indicate that particle LET may be a critical factor in estimating the risk of developing a cognitive deficit following exposure to space radiation on exploratory class missions.
Neurochemistry International | 2015
Shibu M. Poulose; Nopporn Thangthaeng; Marshall G. Miller; Barbara Shukitt-Hale