Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mart Krupovic is active.

Publication


Featured researches published by Mart Krupovic.


Microbiology and Molecular Biology Reviews | 2011

Genomics of Bacterial and Archaeal Viruses: Dynamics within the Prokaryotic Virosphere

Mart Krupovic; David Prangishvili; Roger W. Hendrix; Dennis H. Bamford

SUMMARY Prokaryotes, bacteria and archaea, are the most abundant cellular organisms among those sharing the planet Earth with human beings (among others). However, numerous ecological studies have revealed that it is actually prokaryotic viruses that predominate on our planet and outnumber their hosts by at least an order of magnitude. An understanding of how this viral domain is organized and what are the mechanisms governing its evolution is therefore of great interest and importance. The vast majority of characterized prokaryotic viruses belong to the order Caudovirales, double-stranded DNA (dsDNA) bacteriophages with tails. Consequently, these viruses have been studied (and reviewed) extensively from both genomic and functional perspectives. However, albeit numerous, tailed phages represent only a minor fraction of the prokaryotic virus diversity. Therefore, the knowledge which has been generated for this viral system does not offer a comprehensive view of the prokaryotic virosphere. In this review, we discuss all families of bacterial and archaeal viruses that contain more than one characterized member and for which evolutionary conclusions can be attempted by use of comparative genomic analysis. We focus on the molecular mechanisms of their genome evolution as well as on the relationships between different viral groups and plasmids. It becomes clear that evolutionary mechanisms shaping the genomes of prokaryotic viruses vary between different families and depend on the type of the nucleic acid, characteristics of the virion structure, as well as the mode of the life cycle. We also point out that horizontal gene transfer is not equally prevalent in different virus families and is not uniformly unrestricted for diverse viral functions.


Nature Reviews Microbiology | 2008

Virus evolution: how far does the double beta-barrel viral lineage extend?

Mart Krupovic; Dennis H. Bamford

During the past few years one of the most astonishing findings in the field of virology has been the realization that viruses that infect hosts from all three domains of life are often structurally similar. The recent burst of structural information points to a need to create a new way to organize the virosphere that, in addition to the current classification, would reflect relationships between virus families. Using the vertical β-barrel major capsid proteins and ATPases related to known viral genome-packaging ATPases as examples, we can now re-evaluate the classification of viruses and virus-like genetic elements from a structural standpoint.


Virology | 2015

Origins and evolution of viruses of eukaryotes: The ultimate modularity

Eugene V. Koonin; Valerian V. Dolja; Mart Krupovic

Abstract Viruses and other selfish genetic elements are dominant entities in the biosphere, with respect to both physical abundance and genetic diversity. Various selfish elements parasitize on all cellular life forms. The relative abundances of different classes of viruses are dramatically different between prokaryotes and eukaryotes. In prokaryotes, the great majority of viruses possess double-stranded (ds) DNA genomes, with a substantial minority of single-stranded (ss) DNA viruses and only limited presence of RNA viruses. In contrast, in eukaryotes, RNA viruses account for the majority of the virome diversity although ssDNA and dsDNA viruses are common as well. Phylogenomic analysis yields tangible clues for the origins of major classes of eukaryotic viruses and in particular their likely roots in prokaryotes. Specifically, the ancestral genome of positive-strand RNA viruses of eukaryotes might have been assembled de novo from genes derived from prokaryotic retroelements and bacteria although a primordial origin of this class of viruses cannot be ruled out. Different groups of double-stranded RNA viruses derive either from dsRNA bacteriophages or from positive-strand RNA viruses. The eukaryotic ssDNA viruses apparently evolved via a fusion of genes from prokaryotic rolling circle-replicating plasmids and positive-strand RNA viruses. Different families of eukaryotic dsDNA viruses appear to have originated from specific groups of bacteriophages on at least two independent occasions. Polintons, the largest known eukaryotic transposons, predicted to also form virus particles, most likely, were the evolutionary intermediates between bacterial tectiviruses and several groups of eukaryotic dsDNA viruses including the proposed order “Megavirales” that unites diverse families of large and giant viruses. Strikingly, evolution of all classes of eukaryotic viruses appears to have involved fusion between structural and replicative gene modules derived from different sources along with additional acquisitions of diverse genes.


Archives of Virology | 2017

Changes to taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2017)

M. J. Adams; Elliot J. Lefkowitz; Andrew M. Q. King; Balázs Harrach; Robert L. Harrison; Nick J. Knowles; Andrew M. Kropinski; Mart Krupovic; Jens H. Kuhn; Arcady Mushegian; Max L. Nibert; Sead Sabanadzovic; Hélène Sanfaçon; Stuart G. Siddell; Peter Simmonds; Arvind Varsani; Francisco Murilo Zerbini; Alexander E. Gorbalenya; Andrew J. Davison

This article lists the changes to virus taxonomy approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in March 2017.


Nature Reviews Microbiology | 2017

Consensus statement: Virus taxonomy in the age of metagenomics

Peter Simmonds; M. J. Adams; Mária Benkő; Mya Breitbart; J. Rodney Brister; Eric B. Carstens; Andrew J. Davison; Eric Delwart; Alexander E. Gorbalenya; Balázs Harrach; Roger Hull; Andrew M. Q. King; Eugene V. Koonin; Mart Krupovic; Jens H. Kuhn; Elliot J. Lefkowitz; Max L. Nibert; Richard J. Orton; Marilyn J. Roossinck; Sead Sabanadzovic; Matthew B. Sullivan; Curtis A. Suttle; Robert B. Tesh; René van der Vlugt; Arvind Varsani; F. Murilo Zerbini

The number and diversity of viral sequences that are identified in metagenomic data far exceeds that of experimentally characterized virus isolates. In a recent workshop, a panel of experts discussed the proposal that, with appropriate quality control, viruses that are known only from metagenomic data can, and should be, incorporated into the official classification scheme of the International Committee on Taxonomy of Viruses (ICTV). Although a taxonomy that is based on metagenomic sequence data alone represents a substantial departure from the traditional reliance on phenotypic properties, the development of a robust framework for sequence-based virus taxonomy is indispensable for the comprehensive characterization of the global virome. In this Consensus Statement article, we consider the rationale for why metagenomic sequence data should, and how it can, be incorporated into the ICTV taxonomy, and present proposals that have been endorsed by the Executive Committee of the ICTV.


Journal of Molecular Biology | 2010

Comparative analysis of the mosaic genomes of tailed archaeal viruses and proviruses suggests common themes for virion architecture and assembly with tailed viruses of bacteria.

Mart Krupovic; Patrick Forterre; Dennis H. Bamford

Tailed double-stranded DNA viruses (order Caudovirales) represent the dominant morphotype among viruses infecting bacteria. Analysis and comparison of complete genome sequences of tailed bacterial viruses provided insights into their origin and evolution. Structural and genomic studies have unexpectedly revealed that tailed bacterial viruses are evolutionarily related to eukaryotic herpesviruses. Organisms from the third domain of life, Archaea, are also infected by viruses that, in their overall morphology, resemble tailed viruses of bacteria. However, high-resolution structural information is currently unavailable for any of these viruses, and only a few complete genomes have been sequenced so far. Here we identified nine proviruses that are clearly related to tailed bacterial viruses and integrated into chromosomes of species belonging to four different taxonomic orders of the Archaea. This more than doubled the number of genome sequences available for comparative studies. Our analyses indicate that highly mosaic tailed archaeal virus genomes evolve by homologous and illegitimate recombination with genomes of other viruses, by diversification, and by acquisition of cellular genes. Comparative genomics of these viruses and related proviruses revealed a set of conserved genes encoding putative proteins similar to virion assembly and maturation, as well as genome packaging proteins of tailed bacterial viruses and herpesviruses. Furthermore, fold prediction and structural modeling experiments suggest that the major capsid proteins of tailed archaeal viruses adopt the same topology as the corresponding proteins of tailed bacterial viruses and eukaryotic herpesviruses. Data presented in this study strongly support the hypothesis that tailed viruses infecting archaea share a common ancestry with tailed bacterial viruses and herpesviruses.


PLOS ONE | 2012

Evolution and Diversity of the Microviridae Viral Family through a Collection of 81 New Complete Genomes Assembled from Virome Reads

Simon Roux; Mart Krupovic; Axel Poulet; Didier Debroas; François Enault

Recent studies suggest that members of the Microviridae (a family of ssDNA bacteriophages) might play an important role in a broad spectrum of environments, as they were found in great number among the viral fraction from seawater and human gut samples. 24 completely sequenced Microviridae have been described so far, divided into three distinct groups named Microvirus, Gokushovirinae and Alpavirinae, this last group being only composed of prophages. In this study, we present the analysis of 81 new complete Microviridae genomes, assembled from viral metagenomes originating from various ecosystems. The phylogenetic analysis of the core genes highlights the existence of four groups, confirming the three sub-families described so far and exhibiting a new group, named Pichovirinae. The genomic organizations of these viruses are strikingly coherent with their phylogeny, the Pichovirinae being the only group of this family with a different organization of the three core genes. Analysis of the structure of the major capsid protein reveals the presence of mushroom-like insertions conserved within all the groups except for the microviruses. In addition, a peptidase gene was found in 10 Microviridae and its analysis indicates a horizontal gene transfer that occurred several times between these viruses and their bacterial hosts. This is the first report of such gene transfer in Microviridae. Finally, searches against viral metagenomes revealed the presence of highly similar sequences in a variety of biomes indicating that Microviridae probably have both an important role in these ecosystems and an ancient origin.


Journal of Virology | 2010

Order to the Viral Universe

Mart Krupovic; Dennis H. Bamford

It is perhaps human nature to seek order in everything that surrounds us. With the number of individual viral particles in the biosphere considerably exceeding that of their hosts (33), the virosphere—or the viral universe, if you wish—shares this quest. In fact, the number of viruses is so high that the entire tree of cellular life, from its roots to the tips of its branches, seems to be immersed in the sea of viruses (5). The attempt to bring order to the virosphere is manifested in the work carried out by the International Committee on Taxonomy of Viruses (ICTV) (9), an official body consisting of numerous experts in the field of virology. The ICTV currently recognizes the hierarchical levels of order, family, subfamily, genus, and species. The dominant (but not exclusive) demarcation criterion employed to delineate viruses into different taxonomic levels is sequence comparison, the main advantage of which is the quantitative reflection of the divergence between taxa. Virus origin and evolution are issues that have never ceased to fascinate biologists and are currently highly debated (see recent studies, e.g., references 11-13, 16, 18-19, 21, 23, 27, and 34). Unfortunately, sequence comparisons do not reach far enough to recognize the relationships between viruses that diversified further back in time while leaving no detectable signal at the sequence level. However, new information, coming mainly from structural studies, might help us (i) to reveal deeper evolutionary connections between viruses that were not previously considered to be related and (ii) to establish biologically relevant higher levels of virus classification, thereby bringing additional biology to taxonomy.


BMC Biology | 2014

Casposons: a new superfamily of self-synthesizing DNA transposons at the origin of prokaryotic CRISPR-Cas immunity

Mart Krupovic; Kira S. Makarova; Patrick Forterre; David Prangishvili; Eugene V. Koonin

BackgroundDiverse transposable elements are abundant in genomes of cellular organisms from all three domains of life. Although transposons are often regarded as junk DNA, a growing body of evidence indicates that they are behind some of the major evolutionary innovations. With the growth in the number and diversity of sequenced genomes, previously unnoticed mobile elements continue to be discovered.ResultsWe describe a new superfamily of archaeal and bacterial mobile elements which we denote casposons because they encode Cas1 endonuclease, a key enzyme of the CRISPR-Cas adaptive immunity systems of archaea and bacteria. The casposons share several features with self-synthesizing eukaryotic DNA transposons of the Polinton/Maverick class, including terminal inverted repeats and genes for B family DNA polymerases. However, unlike any other known mobile elements, the casposons are predicted to rely on Cas1 for integration and excision, via a mechanism similar to the integration of new spacers into CRISPR loci. We identify three distinct families of casposons that differ in their gene repertoires and evolutionary provenance of the DNA polymerases. Deep branching of the casposon-encoded endonuclease in the Cas1 phylogeny suggests that casposons played a pivotal role in the emergence of CRISPR-Cas immunity.ConclusionsThe casposons are a novel superfamily of mobile elements, the first family of putative self-synthesizing transposons discovered in prokaryotes. The likely contribution of capsosons to the evolution of CRISPR-Cas parallels the involvement of the RAG1 transposase in vertebrate immunoglobulin gene rearrangement, suggesting that recruitment of endonucleases from mobile elements as ready-made tools for genome manipulation is a general route of evolution of adaptive immunity.


BMC Evolutionary Biology | 2009

Geminiviruses: a tale of a plasmid becoming a virus

Mart Krupovic; Janne J. Ravantti; Dennis H. Bamford

BackgroundGeminiviruses (family Geminiviridae) are small single-stranded (ss) DNA viruses infecting plants. Their virion morphology is unique in the known viral world – two incomplete T = 1 icosahedra are joined together to form twinned particles. Geminiviruses utilize a rolling-circle mode to replicate their genomes. A limited sequence similarity between the three conserved motifs of the rolling-circle replication initiation proteins (RCR Reps) of geminiviruses and plasmids of Gram-positive bacteria allowed Koonin and Ilyina to propose that geminiviruses descend from bacterial replicons.ResultsPhylogenetic and clustering analyses of various RCR Reps suggest that Rep proteins of geminiviruses share a most recent common ancestor with Reps encoded on plasmids of phytoplasmas, parasitic wall-less bacteria replicating both in plant and insect cells and therefore occupying a common ecological niche with geminiviruses. Capsid protein of Satellite tobacco necrosis virus was found to be the best template for homology-based structural modeling of the geminiviral capsid protein. Good stereochemical quality of the generated models indicates that the geminiviral capsid protein shares the same structural fold, the viral jelly-roll, with the vast majority of icosahedral plant-infecting ssRNA viruses.ConclusionWe propose a plasmid-to-virus transition scenario, where a phytoplasmal plasmid acquired a capsid-coding gene from a plant RNA virus to give rise to the ancestor of geminiviruses.

Collaboration


Dive into the Mart Krupovic's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eugene V. Koonin

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jens H. Kuhn

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Arvind Varsani

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Balázs Harrach

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge