Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marta A. Jarzyna is active.

Publication


Featured researches published by Marta A. Jarzyna.


Science | 2017

Biodiversity redistribution under climate change : Impacts on ecosystems and human well-being

Gt Pecl; Miguel B. Araújo; Johann D. Bell; Julia L. Blanchard; Timothy C. Bonebrake; I-Ching Chen; Timothy D. Clark; Robert K. Colwell; Finn Danielsen; Birgitta Evengård; Lorena Falconi; Simon Ferrier; Sd Frusher; Raquel A. Garcia; Roger B. Griffis; Alistair J. Hobday; Charlene Janion-Scheepers; Marta A. Jarzyna; Sarah Jennings; Jonathan Lenoir; Hlif I. Linnetved; Victoria Y. Martin; Phillipa C. McCormack; Jan McDonald; Nicola J. Mitchell; Tero Mustonen; John M. Pandolfi; Nathalie Pettorelli; E. E. Popova; Sharon A. Robinson

Consequences of shifting species distributions Climate change is causing geographical redistribution of plant and animal species globally. These distributional shifts are leading to new ecosystems and ecological communities, changes that will affect human society. Pecl et al. review these current and future impacts and assess their implications for sustainable development goals. Science, this issue p. eaai9214 BACKGROUND The success of human societies depends intimately on the living components of natural and managed systems. Although the geographical range limits of species are dynamic and fluctuate over time, climate change is impelling a universal redistribution of life on Earth. For marine, freshwater, and terrestrial species alike, the first response to changing climate is often a shift in location, to stay within preferred environmental conditions. At the cooler extremes of their distributions, species are moving poleward, whereas range limits are contracting at the warmer range edge, where temperatures are no longer tolerable. On land, species are also moving to cooler, higher elevations; in the ocean, they are moving to colder water at greater depths. Because different species respond at different rates and to varying degrees, key interactions among species are often disrupted, and new interactions develop. These idiosyncrasies can result in novel biotic communities and rapid changes in ecosystem functioning, with pervasive and sometimes unexpected consequences that propagate through and affect both biological and human communities. ADVANCES At a time when the world is anticipating unprecedented increases in human population growth and demands, the ability of natural ecosystems to deliver ecosystem services is being challenged by the largest climate-driven global redistribution of species since the Last Glacial Maximum. We demonstrate the serious consequences of this species redistribution for economic development, livelihoods, food security, human health, and culture, and we document feedbacks on climate itself. As with other impacts of climate change, species range shifts will leave “winners” and “losers” in their wake, radically reshaping the pattern of human well-being between regions and different sectors and potentially leading to substantial conflict. The pervasive impacts of changes in species distribution transcend single systems or dimensions, with feedbacks and linkages between multiple interacting scales and through whole ecosystems, inclusive of humans. We argue that the negative effects of climate change cannot be adequately anticipated or prepared for unless species responses are explicitly included in decision-making and global strategic frameworks. OUTLOOK Despite mounting evidence for the pervasive and substantial impacts of a climate-driven redistribution of Earth’s species, current global goals, policies, and international agreements fail to account for these effects. With the predicted intensification of species movements and their diverse societal and environmental impacts, awareness of species “on the move” should be incorporated into local, regional, and global assessments as standard practice. This will raise hope that future targets—whether they be global sustainability goals, plans for regional biodiversity maintenance, or local fishing or forestry harvest strategies—can be achievable and that society is prepared for a world of universal ecological change. Human society has yet to appreciate the implications of unprecedented species redistribution for life on Earth, including for human lives. Even if greenhouse gas emissions stopped today, the responses required in human systems to adapt to the most serious effects of climate-driven species redistribution would be massive. Meeting these challenges requires governance that can anticipate and adapt to changing conditions, as well as minimize negative consequences. As the global climate changes, human well-being, ecosystem function, and even climate itself are increasingly affected by the shifting geography of life. Climate-driven changes in species distributions, or range shifts, affect human well-being both directly (for example, through emerging diseases and changes in food supply) and indirectly (by degrading ecosystem health). Some range shifts even create feedbacks (positive or negative) on the climate system, altering the pace of climate change. Distributions of Earth’s species are changing at accelerating rates, increasingly driven by human-mediated climate change. Such changes are already altering the composition of ecological communities, but beyond conservation of natural systems, how and why does this matter? We review evidence that climate-driven species redistribution at regional to global scales affects ecosystem functioning, human well-being, and the dynamics of climate change itself. Production of natural resources required for food security, patterns of disease transmission, and processes of carbon sequestration are all altered by changes in species distribution. Consideration of these effects of biodiversity redistribution is critical yet lacking in most mitigation and adaptation strategies, including the United Nation’s Sustainable Development Goals.


Trends in Ecology and Evolution | 2016

Detecting the Multiple Facets of Biodiversity

Marta A. Jarzyna; Walter Jetz

Interest in, and opportunities to include functional and phylogenetic attributes of species in community ecology and biogeography are rapidly growing and seen as vital for the assessment of status and trends in biodiversity. However, the fundamental underlying evidence remains the (co-)occurrence of the biological units, such as species, in time and space and our ability to appropriately detect and quantify them. Here, we examine the implications of imperfect detection of species for functional and phylogenetic diversity (FD and PD) estimates. We explore how FD and PD might have different detectabilities than taxonomic diversity (TD) and how all three might vary differently along spatial and environmental gradients. We also extend occupancy modeling and dendrogram-based methods to address the imperfect detection of different biodiversity facets.


Global Change Biology | 2015

Landscape fragmentation affects responses of avian communities to climate change

Marta A. Jarzyna; William F. Porter; Brian A. Maurer; Benjamin Zuckerberg; Andrew O. Finley

Forecasting the consequences of climate change is contingent upon our understanding of the relationship between biodiversity patterns and climatic variability. While the impacts of climate change on individual species have been well-documented, there is a paucity of studies on climate-mediated changes in community dynamics. Our objectives were to investigate the relationship between temporal turnover in avian biodiversity and changes in climatic conditions and to assess the role of landscape fragmentation in affecting this relationship. We hypothesized that community turnover would be highest in regions experiencing the most pronounced changes in climate and that these patterns would be reduced in human-dominated landscapes. To test this hypothesis, we quantified temporal turnover in avian communities over a 20-year period using data from the New York State Breeding Atlases collected during 1980-1985 and 2000-2005. We applied Bayesian spatially varying intercept models to evaluate the relationship between temporal turnover and temporal trends in climatic conditions and landscape fragmentation. We found that models including interaction terms between climate change and landscape fragmentation were superior to models without the interaction terms, suggesting that the relationship between avian community turnover and changes in climatic conditions was affected by the level of landscape fragmentation. Specifically, we found weaker associations between temporal turnover and climatic change in regions with prevalent habitat fragmentation. We suggest that avian communities in fragmented landscapes are more robust to climate change than communities found in contiguous habitats because they are comprised of species with wider thermal niches and thus are less susceptible to shifts in climatic variability. We conclude that highly fragmented regions are likely to undergo less pronounced changes in composition and structure of faunal communities as a result of climate change, whereas those changes are likely to be greater in contiguous and unfragmented habitats.


Biological Reviews | 2018

Managing consequences of climate-driven species redistribution requires integration of ecology, conservation and social science

Timothy C. Bonebrake; Christopher J. Brown; Johann D. Bell; Julia L. Blanchard; Aliénor L. M. Chauvenet; Curtis Champion; I-Ching Chen; Timothy D. Clark; Robert K. Colwell; Finn Danielsen; Anthony I. Dell; Jennifer M. Donelson; Birgitta Evengård; Simon Ferrier; Sd Frusher; Raquel A. Garcia; Roger B. Griffis; Alistair J. Hobday; Marta A. Jarzyna; E Lee; Jonathan Lenoir; Hlif I. Linnetved; Victoria Y. Martin; Phillipa C. McCormack; Jan McDonald; Eve McDonald-Madden; Nicola J. Mitchell; Tero Mustonen; John M. Pandolfi; Nathalie Pettorelli

Climate change is driving a pervasive global redistribution of the planets species. Species redistribution poses new questions for the study of ecosystems, conservation science and human societies that require a coordinated and integrated approach. Here we review recent progress, key gaps and strategic directions in this nascent research area, emphasising emerging themes in species redistribution biology, the importance of understanding underlying drivers and the need to anticipate novel outcomes of changes in species ranges. We highlight that species redistribution has manifest implications across multiple temporal and spatial scales and from genes to ecosystems. Understanding range shifts from ecological, physiological, genetic and biogeographical perspectives is essential for informing changing paradigms in conservation science and for designing conservation strategies that incorporate changing population connectivity and advance adaptation to climate change. Species redistributions present challenges for human well‐being, environmental management and sustainable development. By synthesising recent approaches, theories and tools, our review establishes an interdisciplinary foundation for the development of future research on species redistribution. Specifically, we demonstrate how ecological, conservation and social research on species redistribution can best be achieved by working across disciplinary boundaries to develop and implement solutions to climate change challenges. Future studies should therefore integrate existing and complementary scientific frameworks while incorporating social science and human‐centred approaches. Finally, we emphasise that the best science will not be useful unless more scientists engage with managers, policy makers and the public to develop responsible and socially acceptable options for the global challenges arising from species redistributions.


Global Change Biology | 2017

A near half-century of temporal change in different facets of avian diversity.

Marta A. Jarzyna; Walter Jetz

Abstract Assessments of spatial patterns of biodiversity change are essential to detect a signature of anthropogenic impacts, inform monitoring and conservation programs, and evaluate implications of biodiversity loss to humans. While taxonomic diversity (TD) is the most commonly assessed attribute of biodiversity, it misses the potential functional or phylogenetic implications of species losses or gains for ecosystems. Functional diversity (FD) and phylogenetic diversity (PD) are able to capture these important trait‐based and phylogenetic attributes of species, but their changes have to date only been evaluated over limited spatial and temporal extents. Employing a novel framework for addressing detectability, we here comprehensively assess a near half‐century of changes in local TD, FD, and PD of breeding birds across much of North America to examine levels of congruency in changes among these biodiversity facets and their variation across spatial and environmental gradients. Time‐series analysis showed significant and continuous increases in all three biodiversity attributes until ca. 2000, followed by a slow decline since. Comparison of avian diversity at the beginning and end of the temporal series revealed net increase in TD, FD, and PD, but changes in TD were larger than those in FD and PD, suggesting increasing biotic homogenization of avian assemblages throughout the United States. Changes were greatest at high elevations and latitudes – consistent with purported effects of ongoing climate change on biodiversity. Our findings highlight the potential of combining new types of data with novel statistical models to enable a more integrative monitoring and assessment of the multiple facets of biodiversity. &NA; Assessing biodiversity change is essential to inform monitoring and conservation programs and evaluate implications of biodiversity loss to humans. We provide a comprehensive evaluation of a near‐half century (1969–2013) of changes in avian taxonomic, functional, and phylogenetic diversity across much of North America. We found increases in bird diversity until ca. 2000, followed by a slow decline since, suggesting recent loss of avian diversity. We also found biotic homogenization of avian assemblages in terms of their functional characteristics. Lastly, we found that assemblage changes were greatest at high elevations and latitudes—consistent with purported effects of ongoing climate change on biodiversity. Figure. No caption available.


Nature Communications | 2018

Taxonomic and functional diversity change is scale dependent

Marta A. Jarzyna; Walter Jetz

Estimates of recent biodiversity change remain inconsistent, debated, and infrequently assessed for their functional implications. Here, we report that spatial scale and type of biodiversity measurement influence evidence of temporal biodiversity change. We show a pervasive scale dependence of temporal trends in taxonomic (TD) and functional (FD) diversity for an ~50-year record of avian assemblages from North American Breeding Bird Survey and a record of global extinctions. Average TD and FD increased at all but the global scale. Change in TD exceeded change in FD toward large scales, signaling functional resilience. Assemblage temporal dissimilarity and turnover (replacement of species or functions) declined, while nestedness (tendency of assemblages to be subsets of one another) increased with scale. Patterns of FD change varied strongly among diet and foraging guilds. We suggest that monitoring, policy, and conservation require a scale-explicit framework to account for the pervasive effect that scale has on perceived biodiversity change.The evidence for and implications of biodiversity change remain widely debated. Jarzyna and Jetz demonstrate a strong and varying scale dependence of avian taxonomic and functional diversity, highlighting the importance of scale when assessing biodiversity change.


Trends in Ecology and Evolution | 2016

Detecting the Multiple Facets of Biodiversity:(Trends in Ecology & Evolution 31, 527–538, July 2016)

Marta A. Jarzyna; Walter Jetz

A mistake has been made in Figure I of Box 1. The description of the equation in Figure I(C) originally read as follows:‘Where Li represents branch lengths and ψi is the true probability of species i occurrence for all terminal branches, or ∏n∈N(1 − ψn) for all intermediate branches (where N contains all species n subtending from a given branch.)’It should read:‘Where Li represents branch lengths and ψi is the true probability of species i occurrence for all terminal branches, or 1 − ∏n∈N(1 − ψn) for all intermediate branches (where N contains all species n subtending from a given branch.)’


Journal of Applied Ecology | 2017

Interpreting and predicting the spread of invasive wild pigs

Nathan P. Snow; Marta A. Jarzyna; Kurt C. VerCauteren


Diversity and Distributions | 2013

Applying occupancy estimation and modelling to the analysis of atlas data

Giancarlo Sadoti; Benjamin Zuckerberg; Marta A. Jarzyna; William F. Porter


Landscape Ecology | 2016

Synergistic effects of climate and land cover: grassland birds are more vulnerable to climate change

Marta A. Jarzyna; Benjamin Zuckerberg; Andrew O. Finley; William F. Porter

Collaboration


Dive into the Marta A. Jarzyna's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benjamin Zuckerberg

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian A. Maurer

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Roger B. Griffis

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicola J. Mitchell

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge