Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marta Barbato is active.

Publication


Featured researches published by Marta Barbato.


BioMed Research International | 2013

Potential for Plant Growth Promotion of Rhizobacteria Associated with Salicornia Growing in Tunisian Hypersaline Soils

Francesca Mapelli; Ramona Marasco; Eleonora Rolli; Marta Barbato; Hanene Cherif; Amel Guesmi; Imen Ouzari; Daniele Daffonchio; Sara Borin

Soil salinity and drought are among the environmental stresses that most severely affect plant growth and production around the world. In this study the rhizospheres of Salicornia plants and bulk soils were collected from Sebkhet and Chott hypersaline ecosystems in Tunisia. Depiction of bacterial microbiome composition by Denaturing Gradient Gel Electrophoresis unveiled the occurrence of a high bacterial diversity associated with Salicornia root system. A large collection of 475 halophilic and halotolerant bacteria was established from Salicornia rhizosphere and the surrounding bulk soil, and the bacteria were characterized for the resistance to temperature, osmotic and saline stresses, and plant growth promotion (PGP) features. Twenty Halomonas strains showed resistance to a wide set of abiotic stresses and were able to perform different PGP activities in vitro at 5% NaCl, including ammonia and indole-3-acetic acid production, phosphate solubilisation, and potential nitrogen fixation. By using a gfp-labelled strain it was possible to demonstrate that Halomonas is capable of successfully colonising Salicornia roots in the laboratory conditions. Our results indicated that the culturable halophilic/halotolerant bacteria inhabiting salty and arid ecosystems have a potential to contribute to promoting plant growth under the harsh salinity and drought conditions. These halophilic/halotolerant strains could be exploited in biofertilizer formulates to sustain crop production in degraded and arid lands.


Bioresource Technology | 2013

Using olive mill wastewater to improve performance in producing electricity from domestic wastewater by using single-chamber microbial fuel cell.

Tommy Pepè Sciarria; Alberto Tenca; Alessandra D’Epifanio; Barbara Mecheri; Giuseppe Merlino; Marta Barbato; Sara Borin; Silvia Licoccia; Virgilio Garavaglia; Fabrizio Adani

Improving electricity generation from wastewater (DW) by using olive mill wastewater (OMW) was evaluated using single-chamber microbial fuel cells (MFC). Doing so single-chambers air cathode MFCs with platinum anode were fed with domestic wastewater (DW) alone and mixed with OMW at the ratio of 14:1 (w/w). MFCs fed with DW+OMW gave 0.38 V at 1 kΩ, while power density from polarization curve was of 124.6 mW m(-2). The process allowed a total reduction of TCOD and BOD5 of 60% and 69%, respectively, recovering the 29% of the coulombic efficiency. The maximum voltage obtained from MFC fed with DW+OMW was 2.9 times higher than that of cell fed with DW. DNA-fingerprinting showed high bacterial diversity for both experiments and the presence on anodes of exoelectrogenic bacteria, such as Geobacter spp. Electrodes selected peculiar consortia and, in particular, anodes of both experiments showed a similar specialization of microbial communities independently by feeding used.


Scientific Reports | 2016

Microbial oil-degradation under mild hydrostatic pressure (10 MPa): which pathways are impacted in piezosensitive hydrocarbonoclastic bacteria?

Alberto Scoma; Marta Barbato; Emma Hernandez-Sanabria; Francesca Mapelli; Daniele Daffonchio; Sara Borin; Nico Boon

Oil spills represent an overwhelming carbon input to the marine environment that immediately impacts the sea surface ecosystem. Microbial communities degrading the oil fraction that eventually sinks to the seafloor must also deal with hydrostatic pressure, which linearly increases with depth. Piezosensitive hydrocarbonoclastic bacteria are ideal candidates to elucidate impaired pathways following oil spills at low depth. In the present paper, we tested two strains of the ubiquitous Alcanivorax genus, namely A. jadensis KS_339 and A. dieselolei KS_293, which is known to rapidly grow after oil spills. Strains were subjected to atmospheric and mild pressure (0.1, 5 and 10 MPa, corresponding to a depth of 0, 500 and 1000 m, respectively) providing n-dodecane as sole carbon source. Pressures equal to 5 and 10 MPa significantly lowered growth yields of both strains. However, in strain KS_293 grown at 10 MPa CO2 production per cell was not affected, cell integrity was preserved and PO43− uptake increased. Analysis of its transcriptome revealed that 95% of its genes were downregulated. Increased transcription involved protein synthesis, energy generation and respiration pathways. Interplay between these factors may play a key role in shaping the structure of microbial communities developed after oil spills at low depth and limit their bioremediation potential.


Journal of Hazardous Materials | 2015

Allochthonous bioaugmentation in ex situ treatment of crude oil-polluted sediments in the presence of an effective degrading indigenous microbiome

Stylianos Fodelianakis; E. A. Antoniou; Francesca Mapelli; Mirko Magagnini; Maria Nikolopoulou; Ramona Marasco; Marta Barbato; Areti Tsiola; I. Tsikopoulou; L. Giaccaglia; Mouna Mahjoubi; Atef Jaouani; Ranya A. Amer; Emad Hussein; Fuad A. Al-Horani; Fatiha Benzha; Mohamed Blaghen; Hanan I. Malkawi; Yasser R. Abdel-Fattah; Ameur Cherif; Daniele Daffonchio; Nicolas Kalogerakis

Oil-polluted sediment bioremediation depends on both physicochemical and biological parameters, but the effect of the latter cannot be evaluated without the optimization of the former. We aimed in optimizing the physicochemical parameters related to biodegradation by applying an ex-situ landfarming set-up combined with biostimulation to oil-polluted sediment, in order to determine the added effect of bioaugmentation by four allochthonous oil-degrading bacterial consortia in relation to the degradation efficiency of the indigenous community. We monitored hydrocarbon degradation, sediment ecotoxicity and hydrolytic activity, bacterial population sizes and bacterial community dynamics, characterizing the dominant taxa through time and at each treatment. We observed no significant differences in total degradation, but increased ecotoxicity between the different treatments receiving both biostimulation and bioaugmentation and the biostimulated-only control. Moreover, the added allochthonous bacteria quickly perished and were rarely detected, their addition inducing minimal shifts in community structure although it altered the distribution of the residual hydrocarbons in two treatments. Therefore, we concluded that biodegradation was mostly performed by the autochthonous populations while bioaugmentation, in contrast to biostimulation, did not enhance the remediation process. Our results indicate that when environmental conditions are optimized, the indigenous microbiome at a polluted site will likely outperform any allochthonous consortium.


Scientific Reports | 2016

An impaired metabolic response to hydrostatic pressure explains Alcanivorax borkumensis recorded distribution in the deep marine water column.

Alberto Scoma; Marta Barbato; Sara Borin; Daniele Daffonchio; Nico Boon

Alcanivorax borkumensis is an ubiquitous model organism for hydrocarbonoclastic bacteria, which dominates polluted surface waters. Its negligible presence in oil-contaminated deep waters (as observed during the Deepwater Horizon accident) raises the hypothesis that it may lack adaptive mechanisms to hydrostatic pressure (HP). The type strain SK2 was tested under 0.1, 5 and 10 MPa (corresponding to surface water, 500 and 1000 m depth, respectively). While 5 MPa essentially inactivated SK2, further increase to 10 MPa triggered some resistance mechanism, as indicated by higher total and intact cell numbers. Under 10 MPa, SK2 upregulated the synthetic pathway of the osmolyte ectoine, whose concentration increased from 0.45 to 4.71 fmoles cell−1. Central biosynthetic pathways such as cell replication, glyoxylate and Krebs cycles, amino acids metabolism and fatty acids biosynthesis, but not β-oxidation, were upregulated or unaffected at 10 MPa, although total cell number was remarkably lower with respect to 0.1 MPa. Concomitantly, expression of more than 50% of SK2 genes was downregulated, including genes related to ATP generation, respiration and protein translation. Thus, A. borkumensis lacks proper adaptation to HP but activates resistance mechanisms. These consist in poorly efficient biosynthetic rather than energy-yielding degradation-related pathways, and suggest that HP does represent a major driver for its distribution at deep-sea.


BioMed Research International | 2015

Bacterial Diversity and Bioremediation Potential of the Highly Contaminated Marine Sediments at El-Max District (Egypt, Mediterranean Sea)

Ranya A. Amer; Francesca Mapelli; Hamada M. El Gendi; Marta Barbato; Doaa A. Goda; Anna Corsini; Lucia Cavalca; Marco Fusi; Sara Borin; Daniele Daffonchio; Yasser R. Abdel-Fattah

Coastal environments worldwide are threatened by the effects of pollution, a risk particularly high in semienclosed basins like the Mediterranean Sea that is poorly studied from bioremediation potential perspective especially in the Southern coast. Here, we investigated the physical, chemical, and microbiological features of hydrocarbon and heavy metals contaminated sediments collected at El-Max bay (Egypt). Molecular and statistical approaches assessing the structure of the sediment-dwelling bacterial communities showed correlations between the composition of bacterial assemblages and the associated environmental parameters. Fifty strains were isolated on mineral media supplemented by 1% crude oil and identified as a diverse range of hydrocarbon-degrading bacteria involved in different successional stages of biodegradation. We screened the collection for biotechnological potential studying biosurfactant production, biofilm formation, and the capability to utilize different hydrocarbons. Some strains were able to grow on multiple hydrocarbons as unique carbon source and presented biosurfactant-like activities and/or capacity to form biofilm and owned genes involved in different detoxification/degradation processes. El-Max sediments represent a promising reservoir of novel bacterial strains adapted to high hydrocarbon contamination loads. The potential of the strains for exploitation for in situ intervention to combat pollution in coastal areas is discussed.


Zoology | 2015

Ultrastructural and biochemical characterization of mechanically adaptable collagenous structures in the edible sea urchin Paracentrotus lividus.

Alice Barbaglio; Serena Tricarico; Ana R. Ribeiro; Cristiano Di Benedetto; Marta Barbato; Desirèe Dessì; Valeria Fugnanesi; Stefano Magni; Fabio Mosca; Michela Sugni; Francesco Bonasoro; Mário A. Barbosa; Iain C. Wilkie; M. Daniela Candia Carnevali

The viscoelastic properties of vertebrate connective tissues rarely undergo significant changes within physiological timescales, the only major exception being the reversible destiffening of the mammalian uterine cervix at the end of pregnancy. In contrast to this, the connective tissues of echinoderms (sea urchins, starfish, sea cucumbers, etc.) can switch reversibly between stiff and compliant conditions in timescales of around a second to minutes. Elucidation of the molecular mechanism underlying such mutability has implications for the zoological, ecological and evolutionary field. Important information could also arise for veterinary and biomedical sciences, particularly regarding the pathological plasticization or stiffening of connective tissue structures. In the present investigation we analyzed aspects of the ultrastructure and biochemistry in two representative models, the compass depressor ligament and the peristomial membrane of the edible sea urchin Paracentrotus lividus, compared in three different mechanical states. The results provide further evidence that the mechanical adaptability of echinoderm connective tissues does not necessarily imply changes in the collagen fibrils themselves. The higher glycosaminoglycan (GAG) content registered in the peristomial membrane with respect to the compass depressor ligament suggests a diverse role of these molecules in the two mutable collagenous tissues. The possible involvement of GAG in the mutability phenomenon will need further clarification. During the shift from a compliant to a standard condition, significant changes in GAG content were detected only in the compass depressor ligament. Similarities in terms of ultrastructure (collagen fibrillar assembling) and biochemistry (two alpha chains) were found between the two models and mammalian collagen. Nevertheless, differences in collagen immunoreactivity, alpha chain migration on SDS-PAGE and BLAST alignment highlighted the uniqueness of sea urchin collagen with respect to mammalian collagen.


Frontiers in Microbiology | 2016

Hydrocarbonoclastic Alcanivorax Isolates Exhibit Different Physiological and Expression Responses to n-dodecane

Marta Barbato; Alberto Scoma; Francesca Mapelli; Rebecca De Smet; Ibrahim M. Banat; Daniele Daffonchio; Nico Boon; Sara Borin

Autochthonous microorganisms inhabiting hydrocarbon polluted marine environments play a fundamental role in natural attenuation and constitute promising resources for bioremediation approaches. Alcanivorax spp. members are ubiquitous in contaminated surface waters and are the first to flourish on a wide range of alkanes after an oil-spill. Following oil contamination, a transient community of different Alcanivorax spp. develop, but whether they use a similar physiological, cellular and transcriptomic response to hydrocarbon substrates is unknown. In order to identify which cellular mechanisms are implicated in alkane degradation, we investigated the response of two isolates belonging to different Alcanivorax species, A. dieselolei KS 293 and A. borkumensis SK2 growing on n-dodecane (C12) or on pyruvate. Both strains were equally able to grow on C12 but they activated different strategies to exploit it as carbon and energy source. The membrane morphology and hydrophobicity of SK2 changed remarkably, from neat and hydrophilic on pyruvate to indented and hydrophobic on C12, while no changes were observed in KS 293. In addition, SK2 accumulated a massive amount of intracellular grains when growing on pyruvate, which might constitute a carbon reservoir. Furthermore, SK2 significantly decreased medium surface tension with respect to KS 293 when growing on C12, as a putative result of higher production of biosurfactants. The transcriptomic responses of the two isolates were also highly different. KS 293 changes were relatively balanced when growing on C12 with respect to pyruvate, giving almost the same amount of upregulated (28%), downregulated (37%) and equally regulated (36%) genes, while SK2 transcription was upregulated for most of the genes (81%) when growing on pyruvate when compared to C12. While both strains, having similar genomic background in genes related to hydrocarbon metabolism, retained the same capability to grow on C12, they nevertheless presented very different physiological, cellular and transcriptomic landscapes.


Genome Announcements | 2015

Draft Genome Sequence of the Hydrocarbon-Degrading Bacterium Alcanivorax dieselolei KS-293 Isolated from Surface Seawater in the Eastern Mediterranean Sea

Marta Barbato; Francesca Mapelli; Bessem Chouaia; Elena Crotti; Daniele Daffonchio; Sara Borin

ABSTRACT We report here the draft genome sequence of Alcanivorax dieselolei KS-293, a hydrocarbonoclastic bacterium isolated from the Mediterranean Sea, by supplying diesel oil as the sole carbon source. This strain contains multiple putative genes associated with hydrocarbon degradation pathways and that are highly similar to those described in A. dieselolei type strain B5.


Ocean Science | 2013

Biogeography of planktonic microbial communities across the whole Mediterranean Sea

Francesca Mapelli; M. M. Varela; Marta Barbato; R. Alvariño; Marco Fusi; M. Álvarez; Giuseppe Merlino; Daniele Daffonchio; Sara Borin

Collaboration


Dive into the Marta Barbato's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniele Daffonchio

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marco Fusi

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ramona Marasco

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge