Marta Béjar-Pizarro
University of Alicante
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marta Béjar-Pizarro.
Remote Sensing | 2015
Maria Przyłucka; Gerardo Herrera; Marek Graniczny; Davide Colombo; Marta Béjar-Pizarro
In this work, the analysis of TerraSAR-X satellite images combining both conventional and advanced Differential Synthetic Aperture Radar Interferometry (DInSAR) approaches has proven to be effective to detect and monitor fast evolving mining subsidence on urban areas in the Upper Silesian Coal Basin (Poland). This region accounts for almost three million inhabitants where mining subsidence has produced severe damage to urban structures and infrastructures in recent years. Conventional DInSAR approach was used to generate 28 differential interferograms between 5 July 2011 and 21 June 2012 identifying 31 subsidence troughs that account up to 245 mm of displacement in 54 days (equivalent to 1660 mm/year). SqueeSARTM processing yielded a very dense measurement point distribution, failing to detect faster displacements than 330 mm/year, which occur within the subsidence troughs detected with conventional DInSAR. Despite this limitation, this approach was useful to delimit stable areas where mining activities are not conducted and areas affected by residual subsidence surrounding the detected subsidence troughs. These residual subsidence mining areas are located approximately 1 km away from the 31 detected subsidence troughs and account for a subsidence rate greater than 17 mm/year on average. The validation of this methodology has been performed over Bytom City were underground mining activity produced severe damages in August 2011. Conventional DInSAR permitted to successfully map subsidence troughs between July and August 2011 that coincide spatially and temporally with the evolution of underground mining excavations, as well as with the demolition of 28 buildings of Karb district. Additionally, SqueeSARTM displacement estimates were useful to delimit an area of 8.3 km2 of Bytom city that is affected by a residual mining subsidence greater than 5 mm/year and could potentially suffer damages in the midterm. The comparison between geodetic data and SqueeSARTM for the common monitoring period yields and average absolute difference of 7 mm/year, which represents 14% of the average displacement rate measured by the geodetic benchmarks. These results demonstrate that the combined exploitation of high-resolution satellite SAR data through both conventional and advanced DInSAR techniques could be crucial to monitor fast evolving mining subsidence, which may severely impact highly populated mining areas such as the Upper Silesia Coal Basin (USCB).
Remote Sensing | 2017
Anna Barra; Lorenzo Solari; Marta Béjar-Pizarro; Oriol Monserrat; Silvia Bianchini; Gerardo Herrera; Michele Crosetto; Roberto Sarro; Elena González-Alonso; Rosa María Mateos; Sergio Ligüerzana; Carmen López; Sandro Moretti
This work is focused on deformation activity mapping and monitoring using Sentinel-1 (S-1) data and the DInSAR (Differential Interferometric Synthetic Aperture Radar) technique. The main goal is to present a procedure to periodically update and assess the geohazard activity (volcanic activity, landslides and ground-subsidence) of a given area by exploiting the wide area coverage and the high coherence and temporal sampling (revisit time up to six days) provided by the S-1 satellites. The main products of the procedure are two updatable maps: the deformation activity map and the active deformation areas map. These maps present two different levels of information aimed at different levels of geohazard risk management, from a very simplified level of information to the classical deformation map based on SAR interferometry. The methodology has been successfully applied to La Gomera, Tenerife and Gran Canaria Islands (Canary Island archipelago). The main obtained results are discussed.
Remote Sensing | 2016
Marta Béjar-Pizarro; Carolina Guardiola-Albert; Ramón P. García-Cárdenas; Gerardo Herrera; Anna Barra; Antonio López Molina; Serena Tessitore; Alejandra Staller; José Ortega-Becerril; Ramón P. García-García
Land subsidence resulting from groundwater extractions is a global phenomenon adversely affecting many regions worldwide. Understanding the governing processes and mitigating associated hazards require knowing the spatial distribution of the implicated factors (piezometric levels, lithology, ground deformation), usually only known at discrete locations. Here, we propose a methodology based on the Kriging with External Drift (KED) approach to interpolate sparse point measurements of variables influencing land subsidence using high density InSAR measurements. In our study, located in the Alto Guadalentin basin, SE Spain, these variables are GPS vertical velocities and the thickness of compressible soils. First, we estimate InSAR and GPS rates of subsidence covering the periods 2003–2010 and 2004–2013, respectively. Then, we apply the KED method to the discrete variables. The resulting continuous GPS velocity map shows maximum subsidence rates of 13 cm/year in the center of the basin, in agreement with previous studies. The compressible deposits thickness map is significantly improved. We also test the coherence of Sentinel-1 data in the study region and evaluate the applicability of this methodology with the new satellite, which will improve the monitoring of aquifer-related subsidence and the mapping of variables governing this phenomenon.
Remote Sensing | 2017
Guadalupe Bru; Pablo J. González; Rosa María Mateos; Francisco Javier Roldán; Gerardo Herrera; Marta Béjar-Pizarro; José Fernández
Terrain surface displacements at a site can be induced by more than one geological process. In this work, we use advanced differential interferometry SAR (A-DInSAR) to measure ground deformation in Arcos de la Frontera (SW Spain), where severe damages related to landslide activity and subsidence have occurred in recent years. The damages are concentrated in two residential neighborhoods constructed between 2001 and 2006. One of the neighborhoods, called La Verbena, is located at the head of an active retrogressive landslide that has an extension of around 0.17 × 106 m2 and developed in weathered clayey soils. Landslide motion has caused building deterioration since they were constructed. After a heavy rainfall period in winter 2009–2010, the movement was accelerated, worsening the situation. The other neighborhood, Pueblos Blancos, was built over a poorly compacted artificial filling undergoing a spatially variable consolidation process which has also led to severe damage to buildings. For both cases, a short set of C-band data from the “ENVISAT 2010+” project has been used to monitor surface displacement for the period spanning April 2011–January 2012. In this work we characterize the mechanism of both ground deformation processes using in situ and remote sensing techniques along with a detailed geological interpretation and urban damage distribution.
Geomatics, Natural Hazards and Risk | 2018
Lorenzo Solari; Anna Barra; Gerardo Herrera; Silvia Bianchini; Oriol Monserrat; Marta Béjar-Pizarro; Michele Crosetto; Roberto Sarro; Sandro Moretti
ABSTRACT The detection of active movements that could threat the infrastructures and the population is one of the main priorities of the risk management chain. Interferometric Synthetic Aperture Radar (InSAR) techniques represent one of the most useful answers to this task; however, it is difficult to manage the huge amount of information derived from the interferometric analysis. In this work, we present a procedure for deriving impact assessment maps, over a regional test site, using as starting point Sentinel-1 SAR (Synthetic Aperture Radar) images and a catalogue of elements at risk that acts as a second input of the methodology. We applied the proposed approach, named as Vulnerable Elements Activity Maps (VEAM), to the islands of Gran Canaria, La Gomera and Tenerife (Spain), where we analysed SAR images covering the time interval November 2014–September 2016. The methodology, meant to be a powerful tool for reducing the time needed for a complete analysis of a full stack of InSAR data, is ideally suited for Civil Protection Authorities. The application of the methodology allowed to detect 108 areas affected by active deformation that are threatening one or more elements at risk in 25 municipalities of the three islands.
Remote Sensing | 2017
Jorge Pedro Galve; José Vicente Pérez-Peña; José Miguel Azañón; Damien Closson; Fabiana Calò; Cristina Reyes-Carmona; A. Jabaloy; Patricia Ruano; Rosa María Mateos; Davide Notti; Gerardo Herrera; Marta Béjar-Pizarro; Oriol Monserrat; Philippe Bally
The analysis of remote sensing data to assess geohazards is being improved by web-based platforms and collaborative projects, such as the Geohazard Exploitation Platform (GEP) of the European Space Agency (ESA). This paper presents the evaluation of a surface velocity map that is generated by this platform. The map was produced through an unsupervised Multi-temporal InSAR (MTI) analysis applying the Parallel-SBAS (P-SBAS) algorithm to 25 ENVISAT satellite images from the South of Spain that were acquired between 2003 and 2008. This analysis was carried out using a service implemented in the GEP called “SBAS InSAR”. Thanks to the map that was generated by the SBAS InSAR service, we identified processes not documented so far; provided new monitoring data in places affected by known ground instabilities; defined the area affected by these instabilities; and, studied a case where GEP could have been able to help in the forecast of a slope movement reactivation. This amply demonstrates the reliability and usefulness of the GEP, and shows how web-based platforms may enhance the capacity to identify, monitor, and assess hazards that are associated to geological processes.
Remote Sensing | 2017
Marta Béjar-Pizarro; Davide Notti; Rosa María Mateos; Pablo Ezquerro; Giuseppe Centolanza; Gerardo Herrera; Guadalupe Bru; Margarita Sanabria; Lorenzo Solari; Javier Duro; José M. García Fernández
Landslides are widespread natural hazards that generate considerable damage and economic losses worldwide. Detecting terrain movements caused by these phenomena and characterizing affected urban areas is critical to reduce their impact. Here we present a fast and simple methodology to create maps of vulnerable buildings affected by slow-moving landslides, based on two parameters: (1) the deformation rate associated to each building, measured from Sentinel-1 SAR data, and (2) the building damage generated by the landslide movement and recorded during a field campaign. We apply this method to Arcos de la Frontera, a monumental town in South Spain affected by a slow-moving landslide that has caused severe damage to buildings, forcing the evacuation of some of them. Our results show that maximum deformation rates of 4 cm/year in the line-of-sight (LOS) of the satellite, affects La Verbena, a newly-developed area, and displacements are mostly horizontal, as expected for a planar-landslide. Our building damage assessment reveals that most of the building blocks in La Verbena present moderate to severe damages. According to our vulnerability scale, 93% of the building blocks analysed present high vulnerability and, thus, should be the focus of more in-depth local studies to evaluate the serviceability of buildings, prior to adopting the necessary mitigation measures to reduce or cope with the negative consequences of this landslide. This methodology can be applied to slow-moving landslides worldwide thanks to the global availability of Sentinel-1 SAR data.
Workshop on World Landslide Forum | 2017
Gerardo Herrera; Juan Carlos García López-Davalillo; José Antonio Fernández-Merodo; Marta Béjar-Pizarro; Paolo Allasia; Piernicola Lollino; Giorgio Lollino; Fausto Guzzetti; Maria Inmaculada Álvarez-Fernández; Andrea Manconi; Javier Duro; Ciscu Sánchez; Rubén Iglesias
Monitoring is essential to understand the mechanics of landslides, and predict their behavior in time and space. In this work we discuss the performance of multi-sensor monitoring techniques applied to measure the kinematics and the landslide hydrology of Portalet landslide complex, which is located in the SW-facing slopes of Petrasos peak at the border between Spain and France. In the summer 2004, the excavation of a parking lot at the foot of the slides triggered a secondary failure in the lower part of the slope, accelerating the dynamic of the landslide complex. The deployed hydro-meteorological network has been useful to understand that the greatest infiltration in the moving mass is produced in spring due to the combination of snow melt and seasonal rainfall. Landslide surface kinematics measured with differential GPS (D-GPS) were useful to measure the slower (<10 cm/year) and faster (20–30 cm/year) dynamic of the landslide complex. Advanced DInSAR was useful to monitor the slower ground displacements from long datasets of SAR images, providing a wider spatial coverage and measurement point density than the D-GPS. In addition, the NL-InSAR processing strategy was applied to monitor the faster motion using short datasets of TerraSAR-X images excluding the snow cover period. The installed horizontal extensometers were useful to study the extension of the head scarp and its relationship with landslide hydrology, which is affected by the retrogressive effect of the landslide due to the loss of lateral confining pressure. Finally, an inclinometric robot system (AIS) was the only technique capable of detecting 5–6 time faster motion after the snow melt, since it provides daily measurements with high accuracy even during the snow cover period. These data, even if expensive to gather, are necessary to improve the hydro-mechanical modeling of large slow landslides, such as those already proposed for Portalet landslide complex.
Geofluids | 2017
Pablo Ezquerro; Carolina Guardiola-Albert; Gerardo Herrera; José Antonio Fernández-Merodo; Marta Béjar-Pizarro; Roberta Bonì
In the current context of climate change, improving groundwater monitoring and management is an important issue for human communities in arid environments. The exploitation of groundwater resources can trigger land subsidence producing damage in urban structures and infrastructures. Alto Guadalentin aquifer system in SE Spain has been exploited since 1960 producing an average piezometric level drop of 150 m. This work presents a groundwater model that reproduces groundwater evolution during 52 years with an average error below 10%. The geometry of the model was improved introducing a layer of less permeable and deformable soft soils derived from InSAR deformation and borehole data. The resulting aquifer system history of the piezometric level has been compared with ENVISAT deformation data to calculate a first-order relationship between groundwater changes, soft soil thickness, and surface deformation. This relationship has been validated with the displacement data from ERS and Cosmo-SkyMed satellites. The resulting regression function is then used as an empirical subsidence model to estimate a first approximation of the deformation of the aquifer system since the beginning of the groundwater extraction, reaching 1 to 5.5 m in 52 years. These rough estimations highlight the limitations of the proposed empirical model, requiring the implementation of a coupled hydrogeomechanical model.
Remote Sensing | 2018
Marta Béjar-Pizarro; José Antonio Álvarez Gómez; Alejandra Staller; Marco P. Luna; Raúl Pérez-López; Oriol Monserrat; Kervin Chunga; Aracely Lima; Jorge Pedro Galve; José J. Martínez Díaz; Rosa María Mateos; Gerardo Herrera
It has long been recognized that earthquakes change the stress in the upper crust around the fault rupture and can influence the behaviour of neighbouring faults and volcanoes. Rapid estimates of these stress changes can provide the authorities managing the post-disaster situation with valuable data to identify and monitor potential threads and to update the estimates of seismic and volcanic hazard in a region. Here we propose a methodology to evaluate the potential influence of an earthquake on nearby faults and volcanoes and create easy-to-understand maps for decision-making support after large earthquakes. We apply this methodology to the Mw 7.8, 2016 Ecuador earthquake. Using Sentinel-1 Interferometric Synthetic Aperture Radar (InSAR) and continuous GPS data, we measure the coseismic ground deformation and estimate the distribution of slip over the fault rupture. We also build an alternative source model using the Global Centroid Moment Tensor (CMT) solution. Then we use these models to evaluate changes of static stress on the surrounding faults and volcanoes and produce maps of potentially activated faults and volcanoes. We found, in general, good agreement between our maps and the seismic and volcanic events that occurred after the Pedernales earthquake. We discuss the potential and limitations of the methodology.