Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marta Bianciardi is active.

Publication


Featured researches published by Marta Bianciardi.


Magnetic Resonance Imaging | 2009

Sources of functional magnetic resonance imaging signal fluctuations in the human brain at rest: a 7 T study ☆

Marta Bianciardi; Masaki Fukunaga; Peter van Gelderen; Silvina G. Horovitz; Jacco A. de Zwart; K Shmueli; Jeff H. Duyn

Signal fluctuations in functional magnetic resonance imaging (fMRI) can result from a number of sources that may have a neuronal, physiologic or instrumental origin. To determine the relative contribution of these sources, we recorded physiological (respiration and cardiac) signals simultaneously with fMRI in human volunteers at rest with their eyes closed. State-of-the-art technology was used including high magnetic field (7 T), a multichannel detector array and high-resolution (3 mm(3)) echo-planar imaging. We investigated the relative contribution of thermal noise and other sources of variance to the observed fMRI signal fluctuations both in the visual cortex and in the whole brain gray matter. The following sources of variance were evaluated separately: low-frequency drifts due to scanner instability, effects correlated with respiratory and cardiac cycles, effects due to variability in the respiratory flow rate and cardiac rate, and other sources, tentatively attributed to spontaneous neuronal activity. We found that low-frequency drifts are the most significant source of fMRI signal fluctuations (3.0% signal change in the visual cortex, TE=32 ms), followed by spontaneous neuronal activity (2.9%), thermal noise (2.1%), effects due to variability in physiological rates (respiration 0.9%, heartbeat 0.9%), and correlated with physiological cycles (0.6%). We suggest the selection and use of four lagged physiological noise regressors as an effective model to explain the variance related to fluctuations in the rates of respiration volume change and cardiac pulsation. Our results also indicate that, compared to the whole brain gray matter, the visual cortex has higher sensitivity to changes in both the rate of respiration and the spontaneous resting-state activity. Under the conditions of this study, spontaneous neuronal activity is one of the major contributors to the measured fMRI signal fluctuations, increasing almost twofold relative to earlier experiments under similar conditions at 3 T.


NeuroImage | 2009

Modulation of spontaneous fMRI activity in human visual cortex by behavioral state

Marta Bianciardi; Masaki Fukunaga; Peter van Gelderen; Silvina G. Horovitz; Jacco A. de Zwart; Jeff H. Duyn

The phenomenon of spontaneous fMRI activity is increasingly being exploited to investigate the connectivity of functional networks in human brain with high spatial-resolution. Although mounting evidence points towards a neuronal contribution to this activity, its functional role and dependence on behavioral state remain unclear. In this work, we used BOLD fMRI at 7 T to study the modulation of spontaneous activity in occipital areas by various behavioral conditions, including resting with eyes closed, eyes open with visual fixation, and eyes open with fixation and focal visual stimulation. Spontaneous activity was separated from evoked activity and from signal fluctuations related to cardiac and respiratory cycles. We found that spontaneous activity in visual areas was substantially reduced (amplitude (44%) and coherence (25%)) with the fixation conditions relative to the eyes-closed condition. No significant further modulation was observed when the visual stimulus was added. The observed dependence on behavioral condition suggests that part of spontaneous fMRI signal fluctuations represents neuronal activity. Possible mechanisms for the modulation of spontaneous activity by behavioral state are discussed. The observed linear superposition of spontaneous fMRI activity with focal evoked activity related to visual processing has important implications for fMRI studies, which ideally should take into account the effect of spontaneous activity to properly define brain activations during task conditions.


Brain Research Bulletin | 2006

Functional changes in the activity of cerebellum and frontostriatal regions during externally and internally timed movement in Parkinson's disease.

Antonio Cerasa; Gisela E. Hagberg; Antonella Peppe; Marta Bianciardi; M. Cecilia Gioia; Alberto Costa; Alessandro Castriota-Scanderbeg; Carlo Caltagirone; Umberto Sabatini

We used fMRI to investigate the neurofunctional basis of externally and internally timed movements in Parkinsons disease (PD) patients. Ten PD patients whose medication had been withheld for at least 18h and 11 age- and sex-matched healthy controls were scanned while performing continuation paradigm with a visual metronome. Compared with the controls, PD patients displayed an intact capability to store and reproduce movement frequencies but with a significantly increased movement latencies. No differences in BOLD response were found in both groups when comparing the continuation with the preceding synchronization phase and viceversa, except for activity in visually related regions. Relative to healthy controls during the synchronization phase, PD patients exhibited an overall signal increase in the cerebellum and frontostriatal circuit (putamen, SMA and thalamus) activity together with specific brain areas (right inferior frontal gyrus and insula cortex) that are also implicated in primary timekeeper processes. By contrast, in the continuation phase the only neural network involved to a greater extent by the PD group was the cerebello-thalamic pathway. The lack of neurofunctional differences between the two timing phases suggests that rhythmic externally and internally guided movements engage similar neural networks in PD and matched healthy controls. Moreover, between-group comparison indicates that PD patients OFF medication may compensate for their basal ganglia-cortical loops dysfunction using different motor pathways involving cerebellum and basal ganglia relays during the two phases of rhythmic movement.


Neuroscience | 2003

The aerobic brain: Lactate decrease at the onset of neural activity

S Mangia; Girolamo Garreffa; Marta Bianciardi; Federico Giove; F. Di Salle; B. Maraviglia

The metabolic events of neuronal energetics during functional activity are still partially unexplained. In particular, lactate (and not glucose) was recently proposed as the main substrate for neurons during activity. By means of proton magnetic resonance spectroscopy, lactate was reported to increase during the first minutes of prolonged stimulation, but the studies reported thus far suffered from low temporal resolution. In the present study we used a time-resolved proton magnetic resonance spectroscopy strategy in order to analyse the evolution of lactate during the early seconds following a brief visual stimulation (event-related design). A significant decrease in lactate concentration was observed 5 s after the stimulation, while a recovering of the baseline was observed at 12 s.


Magnetic Resonance in Medicine | 2014

Fast quantitative susceptibility mapping with L1-regularization and automatic parameter selection.

Berkin Bilgic; Audrey P. Fan; Jonathan R. Polimeni; Stephen F. Cauley; Marta Bianciardi; Elfar Adalsteinsson; Lawrence L. Wald; Kawin Setsompop

To enable fast reconstruction of quantitative susceptibility maps with total variation penalty and automatic regularization parameter selection.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Identification of discrete functional subregions of the human periaqueductal gray

Ajay B. Satpute; Tor D. Wager; Julien Cohen-Adad; Marta Bianciardi; Ji-Kyung Choi; Jason T. Buhle; Lawrence L. Wald; Lisa Feldman Barrett

Significance The periaqueductal gray is a brainstem region that is critical for autonomic regulation and for defensive responses (e.g., “fight,” “flight,” “freeze”). It has been studied extensively in rodents and cats, but less is known about the human periaqueductal gray. The small size and shape of the periaqueductal gray makes it challenging to study using standard noninvasive MRI techniques. We used a high-field strength magnet to examine this region at high resolution while participants viewed emotionally aversive or neutral images. Emotion-related functional activity was concentrated in particular subregions and in ways that are consistent with neurobiological observations in nonhuman animals. This study establishes a technique to uncover the functional architecture of the periaqueductal gray in humans. The midbrain periaqueductal gray (PAG) region is organized into distinct subregions that coordinate survival-related responses during threat and stress [Bandler R, Keay KA, Floyd N, Price J (2000) Brain Res 53 (1):95–104]. To examine PAG function in humans, researchers have relied primarily on functional MRI (fMRI), but technological and methodological limitations have prevented researchers from localizing responses to different PAG subregions. We used high-field strength (7-T) fMRI techniques to image the PAG at high resolution (0.75 mm isotropic), which was critical for dissociating the PAG from the greater signal variability in the aqueduct. Activation while participants were exposed to emotionally aversive images segregated into subregions of the PAG along both dorsal/ventral and rostral/caudal axes. In the rostral PAG, activity was localized to lateral and dorsomedial subregions. In caudal PAG, activity was localized to the ventrolateral region. This shifting pattern of activity from dorsal to ventral PAG along the rostrocaudal axis mirrors structural and functional neurobiological observations in nonhuman animals. Activity in lateral and ventrolateral subregions also grouped with distinct emotional experiences (e.g., anger and sadness) in a factor analysis, suggesting that each subregion participates in distinct functional circuitry. This study establishes the use of high-field strength fMRI as a promising technique for revealing the functional architecture of the PAG. The techniques developed here also may be extended to investigate the functional roles of other brainstem nuclei.


NeuroImage | 2008

Realistic simulations of neuronal activity: A contribution to the debate on direct detection of neuronal currents by MRI

Antonino Mario Cassará; Gisela E. Hagberg; Marta Bianciardi; Michele Migliore; B. Maraviglia

Many efforts have been done in order to preview the properties of the magnetic resonance (MR) signals produced by the neuronal currents using simulations. In this paper, starting with a detailed calculation of the magnetic field produced by the neuronal currents propagating over single hippocampal CA1 pyramidal neurons placed inside a cubic MR voxel of length 1.2 mm, we proceeded on the estimation of the phase and magnitude MR signals. We then extended the results to layers of parallel and synchronous similar neurons and to ensembles of layers, considering different echo times, voxel volumes and neuronal densities. The descriptions of the neurons and of their electrical activity took into account the real neuronal morphologies and the physiology of the neuronal events. Our results concern: (a) the expected time course of the MR signals produced by the neuronal currents in the brain, based on physiological and anatomical properties; (b) the different contributions of post-synaptic potentials and of action potentials to the MR signals; (c) the estimation of the equivalent current dipole and the influence of its orientation with respect to the external magnetic field on the observable MR signal variations; (d) the size of the estimated neuronal current induced phase and magnitude MR signal changes with respect to the echo time, voxel-size and neuronal density. The inclusion of realistic neuronal properties into the simulation introduces new information that can be helpful for the design of MR sequences for the direct detection of neuronal current effects and the testing of bio-electromagnetic models.


Journal of Cerebral Blood Flow and Metabolism | 2011

Negative BOLD-fMRI signals in large cerebral veins

Marta Bianciardi; Masaki Fukunaga; Peter van Gelderen; Jacco A. de Zwart; Jeff H. Duyn

Reductions in blood oxygenation level dependent (BOLD)-functional magnetic resonance imaging (fMRI) signals below baseline levels have been observed under several conditions as negative activation in task-activation studies or anticorrelation in resting-state experiments. Converging evidence suggests that negative BOLD signals (NBSs) can generally be explained by local reductions in neural activity. Here, we report on NBSs that accompany hemodynamic changes in regions devoid of neural tissue. The NBSs were investigated with high-resolution studies of the visual cortex (VC) at 7T. Task-activation studies were performed to localize a task-positive area in the VC. During rest, robust negative correlation with the task-positive region was observed in focal regions near the ventricles and dispersed throughout the VC. Both positive and NBSs were dependent on behavioral condition. Comparison with high-resolution structural images showed that negatively correlated regions overlapped with larger pial and ependymal veins near sulcal and ventricular cerebrospinal fluid (CSF). Results from multiecho fMRI showed that NBSs were consistent with increases in local blood volume. These findings confirm theoretical predictions that tie neural activity to blood volume increases, which tend to counteract positive fMRI signal changes associated with increased blood oxygenation. This effect may be more salient in high-resolution studies, in which positive and NBS may be more often spatially distinct.


NeuroImage | 2009

Making the most of fMRI at 7 T by suppressing spontaneous signal fluctuations

Marta Bianciardi; Peter van Gelderen; Jeff H. Duyn; Masaki Fukunaga; Jacco A. de Zwart

The presence of spontaneous BOLD fMRI signal fluctuations in human grey matter compromises the detection and interpretation of evoked responses and limits the sensitivity gains that are potentially available through coil arrays and high field systems. In order to overcome these limitations, we adapted and improved a recently described correlated noise suppression method (de Zwart et al., 2008), demonstrating improved precision in estimating the response to ultra-short visual stimuli at 7 T. In this procedure, the temporal dynamics of spontaneous signal fluctuations are estimated from a reference brain region outside the area targeted with the stimulus. Rather than using the average signal in this region as regressor, as proposed in the original method, we used principal component analysis to derive multiple regressors in order to optimally describe nuisance signals (e.g. spontaneous fluctuations) and separate these from evoked activity in the target region. Experimental results obtained from application of the original method showed a 66% improvement in estimation precision. The novel, enhanced version of the method, using 18 PCA-derived noise regressors, led to a 160% increase in precision. These increases were relative to a control condition without noise suppression, which was simulated by randomizing the time-course of the nuisance-signal regressor(s) without altering their power spectrum. The increase of estimation precision was associated with decreased autocorrelation levels of the residual errors. These results suggest that modeling of spontaneous fMRI signal fluctuations as multiple independent sources can dramatically improve detection of evoked activity, and fully exploit the potential sensitivity gains available with high field technology.


NeuroImage | 2009

Hemodynamic nonlinearities affect BOLD fMRI response timing and amplitude

Jacco A. de Zwart; Peter van Gelderen; J. Martijn Jansma; Masaki Fukunaga; Marta Bianciardi; Jeff H. Duyn

The interpretation of functional magnetic resonance imaging (fMRI) studies based on blood oxygen-level dependent (BOLD) contrast generally relies on the assumption of a linear relationship between evoked neuronal activity and fMRI response. While nonlinearities in this relationship have been suggested by a number of studies, it remains unclear to what extent they relate to the neurovascular response and are therefore inherent to BOLD fMRI. Full characterization of potential vascular nonlinearities is required for accurate inferences about the neuronal system under study. To investigate the extent of vascular nonlinearities, evoked activity was studied in humans with BOLD fMRI (n=28) and magnetoencephalography (MEG) (n=5). Brief (600-800 ms) rapidly repeated (1 Hz) visual stimuli were delivered using a stimulation paradigm that minimized neuronal nonlinearities. Nevertheless, BOLD fMRI experiments showed substantial remaining nonlinearities. The smallest stimulus separation (200-400 ms) resulted in significant response broadening (15-20% amplitude decrease; 10-12% latency increase; 6-14% duration increase) with respect to a linear prediction. The substantial slowing and widening of the response in the presence of preceding stimuli suggest a vascular rather than neuronal origin to the observed nonlinearity. This was confirmed by the MEG data, which showed no significant neuro-electric nonlinear interactions between stimuli as little as 200 ms apart. The presence of substantial vascular nonlinearities has important implications for rapid event-related studies by fMRI and other imaging modalities that infer neuronal activity from hemodynamic parameters.

Collaboration


Dive into the Marta Bianciardi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. Maraviglia

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Jeff H. Duyn

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Girolamo Garreffa

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jacco A. de Zwart

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter van Gelderen

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Nicola Toschi

University of Rome Tor Vergata

View shared research outputs
Researchain Logo
Decentralizing Knowledge