Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marta Bosch is active.

Publication


Featured researches published by Marta Bosch.


Molecular and Cellular Biology | 2001

Calmodulin Binds to K-Ras, but Not to H- or N-Ras, and Modulates Its Downstream Signaling

Priam Villalonga; Cristina López-Alcalá; Marta Bosch; Antonio Chiloeches; Nativitat Rocamora; Joan Gil; Richard Marais; Christopher J. Marshall; Oriol Bachs; Neus Agell

ABSTRACT Activation of Ras induces a variety of cellular responses depending on the specific effector activated and the intensity and amplitude of this activation. We have previously shown that calmodulin is an essential molecule in the down-regulation of the Ras/Raf/MEK/extracellularly regulated kinase (ERK) pathway in cultured fibroblasts and that this is due at least in part to an inhibitory effect of calmodulin on Ras activation. Here we show that inhibition of calmodulin synergizes with diverse stimuli (epidermal growth factor, platelet-derived growth factor, bombesin, or fetal bovine serum) to induce ERK activation. Moreover, even in the absence of any added stimuli, activation of Ras by calmodulin inhibition was observed. To identify the calmodulin-binding protein involved in this process, calmodulin affinity chromatography was performed. We show that Ras and Raf from cellular lysates were able to bind to calmodulin. Furthermore, Ras binding to calmodulin was favored in lysates with large amounts of GTP-bound Ras, and it was Raf independent. Interestingly, only one of the Ras isoforms, K-RasB, was able to bind to calmodulin. Furthermore, calmodulin inhibition preferentially activated K-Ras. Interaction between calmodulin and K-RasB is direct and is inhibited by the calmodulin kinase II calmodulin-binding domain. Thus, GTP-bound K-RasB is a calmodulin-binding protein, and we suggest that this binding may be a key element in the modulation of Ras signaling.


Clinical Cancer Research | 2006

Interleukin 6, a Nuclear Factor-κB Target, Predicts Resistance to Docetaxel in Hormone-Independent Prostate Cancer and Nuclear Factor-κB Inhibition by PS-1145 Enhances Docetaxel Antitumor Activity

Josep Domingo-Domenech; Cristina Oliva; Ana Rovira; Jordi Codony-Servat; Marta Bosch; Xavier Filella; Clara Montagut; Marian Tapia; Clara Campás; Lenny Dang; Mark Rolfe; Jeffrey S. Ross; Pere Gascón; Joan Albanell; Begoña Mellado

Purpose: To investigate whether nuclear factor κB (NF-κB)/interleukin 6 (IL-6) was linked to docetaxel response in human prostate cancer cell lines, and whether inhibition of NF-κB sensitized tumor cells to docetaxel. We also aimed to correlate IL-6 (as a surrogate marker of NF-κB) and docetaxel response in hormone-independent prostate cancer (HIPC) patients. Experimental Design: Hormone-dependent (LNCaP) and hormone-independent (PC-3 and DU-145) prostate cancer cell lines were exposed to docetaxel alone or combined with the NF-κB inhibitor PS-1145 (an inhibitor of IκB kinase-2). Effects of dose, exposure time, and schedule dependence were assessed. Activation of NF-κB was assayed by electrophoresis mobility shift assay and luciferase reporter assay, IL-6 levels by ELISA, and cell viability by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Cell cycle and apoptosis were assessed by fluorescence-activated cell sorting analysis. Apoptosis was also measured by detection of cleavage of poly(ADP-ribose) polymerase. In patients with metastatic HIPC receiving docetaxel-based chemotherapy, IL-6 serum levels were assayed before chemotherapy and every 3 to 4 weeks thereafter. Results: PC-3 and DU-145 cells had higher NF-κB activity, secreted more IL-6, and were more resistant to docetaxel than LNCaP cells. NF-κB activity was induced by docetaxel. Cotreatment with docetaxel and PS-1145 prevented docetaxel-induced NF-κB activation, reduced IL-6 production, and increased docetaxel effects on cell viability in PC-3 and DU-145 cells but not in LNCaP. Synergism with docetaxel and PS-1145, as assayed by median-effect principle, was observed in DU-145 and PC-3. In HIPC patients, pretreatment IL-6 serum levels correlated to prostate-specific antigen (PSA) response: median IL-6 level was 10.8 ± 9.5 pg/mL in PSA responders versus 36.7 ± 20.8 pg/mL (P = 0.006) in nonresponders. A PSA response was also linked to a decline in IL-6 levels during treatment. Median overall survival was 6.8 months in patients with high IL-6 versus 16.6 months in those with low IL-6 (P = 0.0007). On multivariate analysis, pretreatment IL-6 (P = 0.05) was an independent prognostic factor for time to disease progression and survival. Conclusions: Inhibition of NF-κB emerges as an attractive strategy to enhance docetaxel response in prostate cancer. The interest of this view is further supported by a significant association between high IL-6 in sera of HIPC patients and decreased response to docetaxel.


Current Biology | 2011

Caveolin-1 deficiency causes cholesterol dependent mitochondrial dysfunction and apoptotic susceptibility

Marta Bosch; Montserrat Marí; Albert Herms; Ana Patricia Fernández; Alba Fajardo; Adam Kassan; Albert Giralt; Anna Colell; David Balgoma; Elisabet Barbero; Elena González-Moreno; Nuria Matías; Francesc Tebar; Jesús Balsinde; Marta Camps; Carlos Enrich; Steven P. Gross; Carmen García-Ruiz; Esther Pérez-Navarro; José C. Fernández-Checa; Albert Pol

Caveolins (CAVs) are essential components of caveolae, plasma membrane invaginations with reduced fluidity, reflecting cholesterol accumulation. CAV proteins bind cholesterol, and CAVs ability to move between cellular compartments helps control intracellular cholesterol fluxes. In humans, CAV1 mutations result in lipodystrophy, cell transformation, and cancer. CAV1 gene-disrupted mice exhibit cardiovascular diseases, diabetes, cancer, atherosclerosis, and pulmonary fibrosis. The mechanism or mechanisms underlying these disparate effects are unknown, but our past work suggested that CAV1 deficiency might alter metabolism: CAV1(-/-) mice exhibit impaired liver regeneration unless supplemented with glucose, suggesting systemic inefficiencies requiring additional metabolic intermediates. Establishing a functional link between CAV1 and metabolism would provide a unifying theme to explain these myriad pathologies. Here we demonstrate that impaired proliferation and low survival with glucose restriction is a shortcoming of CAV1-deficient cells caused by impaired mitochondrial function. Without CAV1, free cholesterol accumulates in mitochondrial membranes, increasing membrane condensation and reducing efficiency of the respiratory chain and intrinsic antioxidant defense. Upon activation of oxidative phosphorylation, this promotes accumulation of reactive oxygen species, resulting in cell death. We confirm that this mitochondrial dysfunction predisposes CAV1-deficient animals to mitochondrial-related diseases such as steatohepatitis and neurodegeneration.


Molecular Cancer Therapeutics | 2006

Differential cellular and molecular effects of bortezomib, a proteasome inhibitor, in human breast cancer cells

Jordi Codony-Servat; Maria A. Tapia; Marta Bosch; Cristina Oliva; Josep Domingo-Domenech; Begoña Mellado; Mark Rolfe; Jeffrey S. Ross; Pere Gascón; Ana Rovira; Joan Albanell

The cellular and molecular effects of the proteasome inhibitor bortezomib on breast cancer cells are as yet poorly characterized. Here, in a panel of six breast cancer cell lines, bortezomib reduced viability in a concentration-dependent, time-dependent, and cell line–dependent manner. Proteasome activity was relatively high in two of the three more resistant cell lines. No relationship was observed between bortezomib effects on cell viability and expression/phosphorylation of HER-2, epidermal growth factor receptor (EGFR), AKT, or extracellular signal-regulated kinase 1/2 (ERK1/2). Molecular effects of bortezomib were further studied in SK-BR-3 and BT-474 cells because they share expression of EGFR and overexpression of HER-2 while, in contrast, SK-BR-3 cells were 200-fold more sensitive to this agent. Proteasome activity was inhibited to a similar extent in the two cell lines, and known proteasome substrates accumulated similarly. In SK-BR-3 cells, a marked inhibition of EGFR, HER-2, and AKT phosphorylation was observed at a clinically relevant concentration of bortezomib. In contrast, phosphorylation of Raf/mitogen-activated protein kinase kinase 1/2 (MEK 1/2)/ERK1/2 increased by bortezomib. In BT-474 cells, the effects were much less pronounced. Treatment of SK-BR-3 cells with bortezomib combined with pharmacologic inhibitors of EGFR, phosphatidylinositol 3′-kinase, or MEK resulted in modest or no enhancement of the effects on cell viability. Collectively, these results show that bortezomib has differential cellular and molecular effects in human breast cancer cells. The bortezomib-observed effects on signaling transduction molecules might be relevant to help to design mechanistic-based combination treatments. [Mol Cancer Ther 2006;5(3):665–75]


Journal of Cell Biology | 2013

Acyl-CoA synthetase 3 promotes lipid droplet biogenesis in ER microdomains

Adam Kassan; Albert Herms; Andrea Fernández-Vidal; Marta Bosch; Nicole L. Schieber; Babu J.N. Reddy; Alba Fajardo; Mariona Gelabert-Baldrich; Francesc Tebar; Carlos Enrich; Steven P. Gross; Robert G. Parton; Albert Pol

Acyl-CoA synthetase 3 is recruited early to lipid droplet assembly sites on the ER, where it is required for efficient lipid droplet nucleation and lipid storage.


Nature Communications | 2015

AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation

Albert Herms; Marta Bosch; Babu J.N. Reddy; Nicole L. Schieber; Alba Fajardo; Celia Rupérez; Andrea Fernández-Vidal; Charles Ferguson; Carles Rentero; Francesc Tebar; Carlos Enrich; Robert G. Parton; Steven P. Gross; Albert Pol

Lipid droplets (LDs) are intracellular organelles that provide fatty acids (FAs) to cellular processes including synthesis of membranes and production of metabolic energy. While known to move bidirectionally along microtubules (MTs), the role of LD motion and whether it facilitates interaction with other organelles are unclear. Here we show that during nutrient starvation, LDs and mitochondria relocate on detyrosinated MT from the cell centre to adopt a dispersed distribution. In the cell periphery, LD–mitochondria interactions increase and LDs efficiently supply FAs for mitochondrial beta-oxidation. This cellular adaptation requires the activation of the energy sensor AMPK, which in response to starvation simultaneously increases LD motion, reorganizes the network of detyrosinated MTs and activates mitochondria. In conclusion, we describe the existence of a specialized cellular network connecting the cellular energetic status and MT dynamics to coordinate the functioning of LDs and mitochondria during nutrient scarcity.


Journal of Biological Chemistry | 1998

Calmodulin inhibitor W13 induces sustained activation of ERK2 and expression of p21(cip1).

Marta Bosch; Joan Gil; Oriol Bachs; Neus Agell

One of the major signaling pathways by which extracellular signals induce cell proliferation and differentiation involves the activation of extracellular signal-regulated kinases (ERKs). Because calmodulin is essential for quiescent cells to enter cell cycle, the role of calmodulin on ERK2 activation was studied in cultured fibroblasts. Serum, phorbol esters, or active Ras induced ERK2 activation in NIH 3T3 fibroblasts. This activation was not inhibited by calmodulin blockade. Surprisingly, inhibition of calmodulin prior to fetal bovine serum addition prolonged activation of ERK2. Furthermore, inactivation of calmodulin in serum-starved cells induced ERK2 phosphorylation that was dependent on MAP kinase kinase (MEK). Inactivation of calmodulin in serum-starved cells also induced activation of Ras, Raf, and MEK. On the contrary, tyrosine phosphorylation of tyrosine kinase receptors was not observed. These results indicate that calmodulin inhibits ERK2 activation pathway at the level of Ras. Calmodulin inhibition induced overexpression of p21 cip1 which was dependent on MEK activity. We propose that inhibition of Ras by calmodulin prevents the activation of ERK2 at low serum concentration. Thus, entering into the cell cycle after serum addition would imply the overcoming of the inhibitory effect of calmodulin and consequently ERK2 activation. Furthermore, down-regulation of Ras by calmodulin may be also important to determine the duration of ERK2 activation and to prevent a high p21 cip1 expression that would lead to an inhibition of cell proliferation.


Cell Reports | 2014

Cholesterol Regulates Syntaxin 6 Trafficking at trans-Golgi Network Endosomal Boundaries

Meritxell Reverter; Carles Rentero; Ana García-Melero; Monira Hoque; Sandra Vilà de Muga; Anna Alvarez-Guaita; James R.W. Conway; Peta Wood; Rose Cairns; Lilia Lykopoulou; Daniel Grinberg; Lluïsa Vilageliu; Marta Bosch; Joerg Heeren; Juan Blasi; Paul Timpson; Albert Pol; Francesc Tebar; Rachael Z. Murray; Thomas Grewal; Carlos Enrich

Inhibition of cholesterol export from late endosomes causes cellular cholesterol imbalance, including cholesterol depletion in the trans-Golgi network (TGN). Here, using Chinese hamster ovary (CHO) Niemann-Pick type C1 (NPC1) mutant cell lines and human NPC1 mutant fibroblasts, we show that altered cholesterol levels at the TGN/endosome boundaries trigger Syntaxin 6 (Stx6) accumulation into VAMP3, transferrin, and Rab11-positive recycling endosomes (REs). This increases Stx6/VAMP3 interaction and interferes with the recycling of αVβ3 and α5β1 integrins and cell migration, possibly in a Stx6-dependent manner. In NPC1 mutant cells, restoration of cholesterol levels in the TGN, but not inhibition of VAMP3, restores the steady-state localization of Stx6 in the TGN. Furthermore, elevation of RE cholesterol is associated with increased amounts of Stx6 in RE. Hence, the fine-tuning of cholesterol levels at the TGN-RE boundaries together with a subset of cholesterol-sensitive SNARE proteins may play a regulatory role in cell migration and invasion.


Cell Cycle | 2007

Inhibition of the Canonical IKK/NFκB Pathway Sensitizes Human Cancer Cells to Doxorubicin

Maria A. Tapia; Irene González-Navarrete; Alba Dalmases; Marta Bosch; Vanesa Rodriguez-Fanjul; Mark Rolfe; Jeffrey S. Ross; Jovita Mezquita; Cristóbal Mezquita; Oriol Bachs; Pere Gascón; Federico Rojo; Rosario Perona; Ana Rovira; Joan Albanell

The NFκB family is composed by five subunits (p65/RelA, c-Rel, RelB, p105-p50/NFκB1, p100-p52/NF-κB2) and controls the expression of many genes that participate in cell cycle, apoptosis, and other key cellular processes. In a canonical pathway, NF-κB activation depends on the IKK complex activity, which is formed by three subunits (IKKα and IKKβ and IKKγ/NEMO). There is an alternative NFκB activation pathway that does not require IKKβ or IKKγ/NEMO, in which RelB is a major player. We report in a panel of human breast cancer cells that the IKK/NFκB system is generally overexpressed in breast cancer cells and there is heterogeneity in expression levels of individual members between different cell lines. Doxorubicin, an anticancer agent used in patients with breast cancer, activated NFκB and appeared to be less effective in cells expressing predominantly members of the canonical IKK/NFκB. Two NFκB inhibitors, bortezomib and NEMO-Binding Domain Inhibitory Peptide, prevented doxorubicin-induced NFκB activation and increased doxorubicin antitumor effects in BT-474 cells. Transient downregulation of members of the canonical pathway (p65, p52, c-Rel and IKKγ/NEMO) by siRNA in HeLa cells increased doxorubicin cytotoxicity. In contrast, silencing of RelB, a key subunit of the alternative pathway, had no evident effects on doxorubicin cytotoxicity. To conclude, NFκB inhibition sensitized cells to doxorubicin, implying directly p65, p52, c-Rel and IKKγ/NEMO subunits in chemoresistance, but not RelB. These findings suggest that selective inhibition of the canonical NFκB pathway is sufficient to improve doxorubicin antitumor effects.


Traffic | 2009

Hydrophobic and Basic Domains Target Proteins to Lipid Droplets

Mercedes Ingelmo-Torres; Elena González-Moreno; Adam Kassan; Michael Hanzal-Bayer; Francesc Tebar; Albert Herms; Thomas Grewal; John F. Hancock; Carlos Enrich; Marta Bosch; Steven P. Gross; Robert G. Parton; Albert Pol

In recent years, progress in the study of the lateral organization of the plasma membrane has led to the proposal that mammalian cells use two different organelles to store lipids: intracellular lipid droplets (LDs) and plasma membrane caveolae. Experimental evidence suggests that caveolin (CAV) may act as a sensitive lipid‐organizing molecule that physically connects these two lipid‐storing organelles. Here, we determine the sequences necessary for efficient sorting of CAV to LDs. We show that targeting is a process cooperatively mediated by two motifs. CAVs central hydrophobic domain (Hyd) anchors CAV to the endoplasmic reticulum (ER). Next, positively charged sequences (Pos‐Seqs) mediate sorting of CAVs into LDs. Our findings were confirmed by identifying an equivalent, non‐conserved but functionally interchangeable Pos‐Seq in ALDI, a bona fide LD‐resident protein. Using this information, we were able to retarget a cytosolic protein and convert it to an LD‐resident protein. Further studies suggest three requirements for targeting via this mechanism: the positive charge of the Pos‐Seq, physical proximity between Pos‐Seq and Hyd and a precise spatial orientation between both motifs. The study uncovers remarkable similarities with the signals that target proteins to the membrane of mitochondria and peroxisomes

Collaboration


Dive into the Marta Bosch's collaboration.

Top Co-Authors

Avatar

Albert Pol

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Oriol Bachs

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Albert Herms

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neus Agell

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Pere Gascón

University of Barcelona

View shared research outputs
Researchain Logo
Decentralizing Knowledge