Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marta Camps is active.

Publication


Featured researches published by Marta Camps.


Nature Genetics | 1999

Non-type I cystinuria caused by mutations in SLC7A9, encoding a subunit (b(o,+)AT) of rBAT

Lídia Feliubadaló; Mariona Font; Jesús Purroy; Ferran Rousaud; Xavier Estivill; Virginia Nunes; Eliahu Golomb; Michael Centola; Ivona Aksentijevich; Yitshak Kreiss; Boleslaw Goldman; Mordechai Pras; Daniel L. Kastner; Elon Pras; Paolo Gasparini; Luigi Bisceglia; Ercole Beccia; M. Gallucci; Luisa de Sanctis; Alberto Ponzone; Gian Franco Rizzoni; Leopoldo Zelante; Maria Teresa Bassi; Alfred L. George; Marta Manzoni; Alessandro De Grandi; Mirko Riboni; John K. Endsley; Andrea Ballabio; Giuseppe Borsani

Cystinuria (MIM 220100) is a common recessive disorder of renal reabsorption of cystine and dibasic amino acids. Mutations in SLC3A1, encoding rBAT, cause cystinuria type I (ref. 1), but not other types of cystinuria (ref. 2). A gene whose mutation causes non-type I cystinuria has been mapped by linkage analysis to 19q12–13.1 (refs 3,4). We have identified a new transcript, encoding a protein (bo,+AT, for bo,+ amino acid transporter) belonging to a family of light subunits of amino acid transporters, expressed in kidney, liver, small intestine and placenta, and localized its gene (SLC7A9) to the non-type I cystinuria 19q locus. Co-transfection of bo,+AT and rBAT brings the latter to the plasma membrane, and results in the uptake of L-arginine in COS cells. We have found SLC7A9 mutations in Libyan-Jews, North American, Italian and Spanish non-type I cystinuria patients. The Libyan Jewish patients are homozygous for a founder missense mutation (V170M) that abolishes b o,+AT amino-acid uptake activity when co-transfected with rBAT in COS cells. We identified four missense mutations (G105R, A182T, G195R and G295R) and two frameshift (520insT and 596delTG) mutations in other patients. Our data establish that mutations in SLC7A9 cause non-type I cystinuria, and suggest that bo,+AT is the light subunit of rBAT.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Lipid rafts are required for GLUT4 internalization in adipose cells

Anna Ros-Baró; Sandra Peiró; David Bellido; Manuel Palacín; Antonio Zorzano; Marta Camps

It has been recently reported that insulin recruits a novel signaling machinery to lipid rafts required for insulin-stimulated GLUT4 translocation [Baumann, A., Ribon, V., Kanzaki, M., Thurmond, D. C., Mora, S., Shigematsu, S., Bickel, P. E., Pessin, J. E. & Saltiel, A. R. (2001) Nature 407, 202–207, 2000; Chiang, S. H., Baumann, C. A., Kanzaki, M., Thurmond, D. C., Watson, R. T., Neudauer, C. L., Macara, I. G., Pessin, J. E. & Saltiel, A. R. (2001) Nature 410, 944–948]. We have assessed the role of lipid rafts on GLUT4 traffic in adipose cells. High GLUT4 levels were detected in caveolae from adipocytes by two approaches, the mechanical isolation of purified caveolae from plasma membrane lawns and the immunogold analysis of plasma membrane lawns followed by freeze-drying. The role of lipid rafts in GLUT4 trafficking was studied by adding nystatin or filipin at concentrations that specifically disrupt caveolae morphology and inhibit caveolae function without altering clathrin-mediated endocytosis. These caveolae inhibitors did not affect the insulin-stimulated glucose transport. However, they blocked both the GLUT4 internalization and the down-regulation of glucose transport triggered by insulin removal in 3T3-L1 adipocytes. Our data indicate that lipid rafts are crucial for GLUT4 internalization after insulin removal. Given that high levels of GLUT4 were detected in caveolae from insulin-treated adipose cells, this transporter may be internalized from caveolae or caveolae may operate as an obligatory transition station before internalization.


Current Biology | 2011

Caveolin-1 deficiency causes cholesterol dependent mitochondrial dysfunction and apoptotic susceptibility

Marta Bosch; Montserrat Marí; Albert Herms; Ana Patricia Fernández; Alba Fajardo; Adam Kassan; Albert Giralt; Anna Colell; David Balgoma; Elisabet Barbero; Elena González-Moreno; Nuria Matías; Francesc Tebar; Jesús Balsinde; Marta Camps; Carlos Enrich; Steven P. Gross; Carmen García-Ruiz; Esther Pérez-Navarro; José C. Fernández-Checa; Albert Pol

Caveolins (CAVs) are essential components of caveolae, plasma membrane invaginations with reduced fluidity, reflecting cholesterol accumulation. CAV proteins bind cholesterol, and CAVs ability to move between cellular compartments helps control intracellular cholesterol fluxes. In humans, CAV1 mutations result in lipodystrophy, cell transformation, and cancer. CAV1 gene-disrupted mice exhibit cardiovascular diseases, diabetes, cancer, atherosclerosis, and pulmonary fibrosis. The mechanism or mechanisms underlying these disparate effects are unknown, but our past work suggested that CAV1 deficiency might alter metabolism: CAV1(-/-) mice exhibit impaired liver regeneration unless supplemented with glucose, suggesting systemic inefficiencies requiring additional metabolic intermediates. Establishing a functional link between CAV1 and metabolism would provide a unifying theme to explain these myriad pathologies. Here we demonstrate that impaired proliferation and low survival with glucose restriction is a shortcoming of CAV1-deficient cells caused by impaired mitochondrial function. Without CAV1, free cholesterol accumulates in mitochondrial membranes, increasing membrane condensation and reducing efficiency of the respiratory chain and intrinsic antioxidant defense. Upon activation of oxidative phosphorylation, this promotes accumulation of reactive oxygen species, resulting in cell death. We confirm that this mitochondrial dysfunction predisposes CAV1-deficient animals to mitochondrial-related diseases such as steatohepatitis and neurodegeneration.


Diabetologia | 2004

Adipocytes release a soluble form of VAP-1/SSAO by a metalloprotease-dependent process and in a regulated manner

A. Abella; S. García-Vicente; Nathalie Viguerie; A. Ros-Baró; Marta Camps; Manuel Palacín; Antonio Zorzano; Luc Marti

Aims/hypothesisVascular adhesion protein-1 (VAP-1), which is identical to semicarbazide-sensitive amine oxidase (SSAO), is a dual-function membrane protein with adhesion properties and amine oxidase activity. A soluble form of VAP-1 is found in serum, where concentrations are enhanced in diabetes and obesity. In vitro, soluble VAP-1 enhances lymphocyte adhesion to endothelial cells, thus possibly participating in the enhanced lymphocyte adhesion capacity that is implicated in the cardiovascular complications associated with diabetes or obesity. In both, the tissue origin of the soluble VAP-1/SSAO is unknown. We examined whether adipose tissue, which has abundant expression of VAP-1/SSAO, is a source of soluble VAP-1.MethodsWe detected VAP-1/SSAO in plasma of diabetic animals, with or without VAP-1 immunoprecipitation, and in culture medium from 3T3-L1 adipocytes and human adipose tissue explants. VAP-1 protein glycosylation was measured.ResultsDiabetic and obese animals have increased plasma SSAO activity associated with VAP-1 protein. We also found that 3T3-L1 adipocytes and human adipose tissue explants release a soluble form of VAP-1/SSAO, which derives from the membrane. The release of soluble VAP-1 was enhanced by exposure of murine and human adipocytes to TNF-α and blocked by batimastat, a metalloprotease inhibitor. Partial ablation of adipose tissue reduced plasma SSAO activity in normal and diabetic rats.Conclusions/interpretationAdipose cells are a source of soluble VAP-1/SSAO released by shedding of the membrane form. The release of SSAO is regulated by TNF-α and insulin. By releasing VAP-1/SSAO, adipose cells could contribute to the atherogenesis and vascular dysfunction associated with diabetes and obesity.


The FASEB Journal | 1998

The amino acid transport system y+L/4F2hc is a heteromultimeric complex

Raúl Estévez; Marta Camps; Ana M. Rojas; Xavier Testar; Rosa Devés; Matthias A. Hediger; Antonio Zorzano; Manuel Palacín

4F2hc is an almost ubiquitous transmembrane protein in mammalian cells; upon expression in Xenopus laevis oocytes, it induces amino acid transport with characteristics of system y+L. Indirect evidence fostered speculation that function requires the association of 4F2hc with another protein endogenous to oocytes and native tissues. We show that expression of system y+L‐like amino acid transport activity by 4F2hc in oocytes is limited by an endogenous factor and that direct covalent modification of external cysteine residue(s) of an oocyte membrane protein blocks system y+ L/4F2hc transport activity, based on the following. 1) Induction of system y+L‐like activity saturates at very low doses of human 4F2hc cRNA (0.1 ng/oocyte). This saturation occurs with very low expression of 4F2hc at the oocyte surface, and further increased expression of the protein at the cell surface does not result in higher induction of system y+L‐like activity. 2) Human 4F2hc contains only two cysteine residues (C109 and C330). We mutated these residues, singly and in combination, to serine (C109S; CS1, C330S; CS2 and C109S‐C330S, Cys‐less). Mutation CS2 had no effect on the expressed system y+ L‐like transport activity, whereas C109S‐containing mutants (CS1 and Cys‐less) retained only partial y+L‐like transport activity (30 to 50% of wild type). 3) Hg2+, the organic mercury compounds pCMB, and the membrane‐impermeant p‐CMBS almost completely inactivated system y+L‐like induced by human 4F2hc wild type and all the mutants studied. This was reversed by β‐mercaptoethanol, indicating that external cysteine residue(s) are the target of this inactivation. 4) Sensitivity to Hg2+ inactivation is increased by pretreatment of oocytes with β‐mercaptoethanol or in the C109S‐containing mutants (CS1 and Cys‐less). The increased Hg2+ reactivity of C109S‐containing mutants supports the possibility that C109 may be linked by a disulfide bond to the Hg2+‐targeted cysteine residue of the associated protein. These results indicate that 4F2hc is intimately associated with a membrane oocyte protein for the expression of system y+L amino acid transport activity. To our knowledge, this is the first direct evidence for a heteromultimeric protein structure of an organic solute carrier in mammals.— Este´vez, R., Camps, M., Rojas, A. M., Testar, X., Deve ´s, R., Hediger, M. A., Zorzano, A., Palacı´n, M. The amino acid transport system y/L/4F2hc is a heteromultimeric complex. FASEB J. 12, 1319–1329 (1998)


Biochemical Journal | 2000

Substrates of semicarbazide-sensitive amine oxidase co-operate with vanadate to stimulate tyrosine phosphorylation of insulin-receptor-substrate proteins, phosphoinositide 3-kinase activity and GLUT4 translocation in adipose cells

Gemma Enrique-Tarancón; Isabelle Castan; Nathalie Morin; Luc Marti; Anna Abella; Marta Camps; Roser Casamitjana; Manuel Palacín; Xavier Testar; Eva Degerman; Christian Carpéné; Antonio Zorzano

It has been shown that the combination of benzylamine or tyramine and low concentrations of vanadate markedly stimulates glucose transport in rat adipocytes by a mechanism that requires semicarbazide-sensitive amine oxidase (SSAO) activity and H(2)O(2) formation. Here we have further analysed the insulin-like effects of the combination of SSAO substrates and vanadate and we have studied the signal-transduction pathway activated in rat adipocytes. We found that several SSAO substrates (benzylamine, tyramine, methylamine, n-decylamine, histamine, tryptamine or beta-phenylethylamine), in combination with low concentrations of vanadate, stimulate glucose transport in isolated rat adipocytes. Furthermore, SSAO substrates together with vanadate stimulated the recruitment of GLUT4 to the cell surface in isolated rat adipocytes. Benzylamine plus vanadate also stimulated glucose transport and GLUT4 translocation in 3T3-L1 adipocytes. Benzylamine or tyramine in combination with vanadate potently stimulated the tyrosine phosphorylation of both insulin receptor substrate (IRS)-1 and IRS-3. In contrast, benzylamine and vanadate caused only a weak stimulation of insulin receptor kinase. Benzylamine or tyramine in combination with vanadate also stimulated phosphoinositide 3-kinase activity; wortmannin abolished the stimulatory effect of benzylamine and vanadate on glucose transport in adipose cells. Furthermore, the administration of benzylamine and vanadate in vivo caused a rapid lowering of plasma glucose levels, which took place in the absence of alterations in plasma insulin. On the basis of these results we propose that SSAO activity regulates glucose transport in adipocytes. SSAO oxidative activity stimulates glucose transport via the translocation of GLUT4 carriers to the cell surface, resulting from a potent tyrosine phosphorylation of IRS-1 and IRS-3 and phosphoinositide 3-kinase activation. Our results also indicate that substrates of SSAO might regulate glucose disposal in vivo.


American Journal of Cardiology | 1997

Regulation of Glucose Transport, and Glucose Transporters Expression and Trafficking in the Heart: Studies in Cardiac Myocytes

Antonio Zorzano; Lidia Sevilla; Marta Camps; Christoph Becker; Julia Meyer; Helmut Kammermeier; Purificación Muñoz; Anna Gumà; Xavier Testar; Manuel Palacín; Joan Blasi; Yvan Fischer

Cardiac muscle is characterized by a high rate of glucose consumption. In the absence of insulin, glucose transport into cardiomyocytes limits the rate of glucose utilization and therefore it is important to understand the regulation of glucose transporters. Cardiac muscle cells express 2 distinct glucose transporters, GLUT4 and GLUT1; although GLUT4 is quantitatively the more important glucose transporter expressed in heart, GLUT1 is also expressed at a substantial level. In isolated rat cardiomyocytes, insulin acutely stimulates glucose transport and translocates both GLUT4 and GLUT1 from an intracellular site to the cell surface. Recent evidence indicates the existence of at least 2 distinct intracellular membrane populations enriched in GLUT4 with a different protein composition. Elucidation of the intracellular location of these 2 GLUT4 vesicle pools in cardiac myocytes, their role in GLUT4 trafficking, and their relation to insulin-induced GLUT4 translocation needs to be addressed.


Molecular Membrane Biology | 2007

Voltage-dependent anion channel (VDAC) participates in amyloid beta-induced toxicity and interacts with plasma membrane estrogen receptor α in septal and hippocampal neurons

Raquel Marin; Cristina M. Ramírez; Miriam González; Elena González-Muñoz; Antonio Zorzano; Marta Camps; Rafael Alonso; Mario Díaz

Voltage-dependent anion channel (VDAC) is a porin known by its role in metabolite transport across mitochondria and participation in apoptotic processes. Although traditionally accepted to be located within mitochondrial outer membrane, some data has also reported its presence at the plasma membrane level where it seems to participate in regulation of normal redox homeostasis and apoptosis. Here, exposure of septal SN56 and hippocampal HT22 cells to specific anti-VDAC antibodies prior to amyloid beta (Aβ) peptide was observed to prevent neurotoxicity. In these cell lines, we identified a VDAC form associated with the plasma membrane that seems to be particularly abundant in caveolae. The two membrane-related isoforms of estrogen receptor α (mERα) (80 and 67 kDa), known in SN56 cells to participate in estrogen-induced neuroprotection against Aβ injury, were also observed to be present in caveolae. Interestingly, we demonstrated for the first time that both VDAC and mERα interact at the plasma membrane of these neurons as well as in microsomal fractions of the corresponding murine septal and hippocampal tissues. These proteins were also shown to associate with caveolin-1, thereby corroborating their presence in caveolar microdomains. Taken together, these results suggest that VDAC-mERα association at the plasma membrane level may participate in the modulation of Aβ-induced cell death.


Endocrinology | 2009

Caveolin-1 Loss of Function Accelerates Glucose Transporter 4 and Insulin Receptor Degradation in 3T3-L1 Adipocytes

Elena González-Muñoz; Carmen López-Iglesias; Maria Calvo; Manuel Palacín; Antonio Zorzano; Marta Camps

Caveolae are a specialized type of lipid rafts that are stabilized by oligomers of caveolin protein. Caveolae are particularly enriched in adipocytes. Here we analyzed the effects of caveolin-1 knockdown and caveolae ablation on adipocyte function. To this end, we obtained several multiclonal mouse 3T3-L1 cell lines with a reduced expression of caveolin-1 (95% reduction) by a small interfering RNA approach using lentiviral vectors. Control cell lines were obtained by lentiviral infection with lentiviral vectors encoding appropriate scrambled RNAs. Caveolin-1 knockdown adipocytes showed a drastic reduction in the number of caveolae (95% decrease) and cholera toxin labeling was reorganized in dynamic plasma membrane microdomains. Caveolin-1 depletion caused a specific decrease in glucose transporter 4 (GLUT4) and insulin receptor protein levels. This reduction was not the result of a generalized defect in adipocyte differentiation or altered gene expression but was explained by faster degradation of these proteins. Caveolin-1 knockdown adipocytes showed reductions in insulin-stimulated glucose transport, insulin-triggered GLUT4 recruitment to the cell surface, and insulin receptor activation. In all, our data indicate that caveolin-1 loss of function reduces maximal insulin response through lowered stability and diminished expression of insulin receptors and GLUT4. We propose that caveolin-1/caveolae control insulin action in adipose cells.


Diabetologia | 2013

A role for adipocyte-derived lipopolysaccharide-binding protein in inflammation- and obesity-associated adipose tissue dysfunction

José María Moreno-Navarrete; Xavier Escoté; Francisco B. Ortega; Matteo Serino; Mark Campbell; Marie-Caroline Michalski; Martine Laville; Elodie Luche; Pere Domingo; Mònica Sabater; Gerard Pardo; Aurélie Waget; Javier Salvador; Marta Giralt; José Ignacio Rodríguez-Hermosa; Marta Camps; Catherine I. Kolditz; Nathalie Viguerie; Jean Galitzky; Pauline Decaunes; Wifredo Ricart; Gema Frühbeck; Francesc Villarroya; Geltrude Mingrone; Dominique Langin; Antonio Zorzano; Hubert Vidal; Joan Vendrell; Rémy Burcelin; Antonio Vidal-Puig

Aims/hypothesisCirculating lipopolysaccharide-binding protein (LBP) is an acute-phase reactant known to be increased in obesity. We hypothesised that LBP is produced by adipose tissue (AT) in association with obesity.MethodsLBP mRNA and LBP protein levels were analysed in AT from three cross-sectional (n = 210, n = 144 and n = 28) and three longitudinal (n = 8, n = 25, n = 20) human cohorts; in AT from genetically manipulated mice; in isolated adipocytes; and in human and murine cell lines. The effects of a high-fat diet and exposure to lipopolysaccharide (LPS) and peroxisome proliferator-activated receptor (PPAR)γ agonist were explored. Functional in vitro and ex vivo experiments were also performed.ResultsLBP synthesis and release was demonstrated to increase with adipocyte differentiation in human and mouse AT, isolated adipocytes and human and mouse cell lines (Simpson–Golabi–Behmel syndrome [SGBS], human multipotent adipose-derived stem [hMAD] and 3T3-L1 cells). AT LBP expression was robustly associated with inflammatory markers and increased with metabolic deterioration and insulin resistance in two independent cross-sectional human cohorts. AT LBP also increased longitudinally with weight gain and excessive fat accretion in both humans and mice, and decreased with weight loss (in two other independent cohorts), in humans with acquired lipodystrophy, and after ex vivo exposure to PPARγ agonist. Inflammatory agents such as LPS and TNF-α led to increased AT LBP expression in vivo in mice and in vitro, while this effect was prevented in Cd14-knockout mice. Functionally, LBP knockdown using short hairpin (sh)RNA or anti-LBP antibody led to increases in markers of adipogenesis and decreased adipocyte inflammation in human adipocytes.Conclusions/interpretationCollectively, these findings suggest that LBP might have an essential role in inflammation- and obesity-associated AT dysfunction.

Collaboration


Dive into the Marta Camps's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Gumà

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luc Marti

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

G. Rauret

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Miquel Vidal

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

M Palacín

Casa Sollievo della Sofferenza

View shared research outputs
Top Co-Authors

Avatar

A Castelló

University of Barcelona

View shared research outputs
Researchain Logo
Decentralizing Knowledge