Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marta Correia-da-Silva is active.

Publication


Featured researches published by Marta Correia-da-Silva.


Medicinal Research Reviews | 2014

Emerging Sulfated Flavonoids and other Polyphenols as Drugs: Nature as an Inspiration

Marta Correia-da-Silva; Emília Sousa; Madalena Pinto

Nature uses sulfation of endogenous and exogenous molecules mainly to avoid potential toxicity. The growing importance of natural sulfated molecules, as modulators of a number of physiological and pathological processes, has inspired the synthesis of non‐natural sulfated scaffolds. Until the 1990s, the synthesis of sulfated small molecules was almost restricted to derivatives of flavonoids and aimed mainly at structure elucidation and plant biosynthesis studies. Currently, the synthesis of this type of compounds concerns structurally diverse scaffolds and is aimed at the development of potential drugs and/or exploitation of the biological effects of sulfated metabolites. Some important hit compounds are emerging from sulfated flavonoids and other polyphenols mainly as anticoagulant and antiviral agents. When compared with polymeric macromolecules such as heparins, sulfated small molecules could be of value in therapeutics due to their hydrophobic nature that can contribute to improve the bioavailability. This review highlights the synthetic approaches that were applied to obtain monosulfated or polysulfated phenolic small molecules and compiles the diverse biological activities already reported for this type of derivatives. Toxicity and pharmacokinetic parameters of this emerging class of derivatives will also be considered, emphasizing their value for therapeutic applications.


Journal of Medicinal Chemistry | 2011

Polysulfated xanthones: multipathway development of a new generation of dual anticoagulant/antiplatelet agents.

Marta Correia-da-Silva; Emília Sousa; Bárbara Duarte; Franklim Marques; Félix Carvalho; Luís M. Cunha-Ribeiro; Madalena Pinto

A multipathway strategy was used to evaluate the in vitro and in vivo antithrombotic effects of a new synthetic family of sulfated small molecules. Polysulfated xanthonosides showed highly effective anticoagulation effects in vitro, both in plasma (clotting times) and in whole human blood (thromboelastography), as well as in vivo (ip administration, mice). Physicochemical properties were assessed for mangiferin heptasulfate (7), which showed high solubility and stability in water and in human plasma and no putative hepatotoxicity in vivo. Mangiferin heptasulfate (7) was found to be a direct inhibitor of FXa, while persulfated 3,6-(O-β-glucopyranosyl)xanthone (13) acted as a dual inhibitor of FXa (directly and by antithrombin III activation). By impedance aggregometry, compounds 7 and 13 exhibited the antiplatelet effect by inhibition of both arachidonic acid and ADP-induced platelet aggregation. Dual anticoagulant/antiplatelet agents, such as sulfated xanthonosides 7 and 13, are expected to lead to a new therapeutic approach for the treatment of both venous and arterial thrombosis.


Journal of Medicinal Chemistry | 2011

Flavonoids with an Oligopolysulfated Moiety: A New Class of Anticoagulant Agents

Marta Correia-da-Silva; Emília Sousa; Bárbara Duarte; Franklim Marques; Félix Carvalho; Luís M. Cunha-Ribeiro; Madalena Pinto

Polysulfated (oligo)flavonoids were synthesized and assayed for their in vitro and in vivo anticoagulant activities. The approach was based on molecular hybridization of two classes of anticoagulants, sulfated polysaccharides and sulfated flavonoids. The synthesis was optimized using microwave-assisted sulfation with triethylamine-sulfur trioxide. The obtained polysulfated flavonosides were highly effective in increasing clotting times and able to completely block the clotting process, in contrast to their corresponding aglycones. The thromboelastography proved that polysulfated flavonosides possess good whole blood anticoagulation activity. The following structure-activity relationships were found: 3-O-rutinosides (10, 13) were direct inhibitors of FXa, while 7-O-rutinosides (7, 8) showed inhibition of FXa by ATIII activation. Furthermore, compounds 7 and 13 were stable in plasma and active in vivo and preliminary toxicity studies would lead us to rule out acute side effects. From the overall results, the polysulfated flavonosides showed the potential as new effective and safe agents for anticoagulant therapy.


European Journal of Medicinal Chemistry | 2011

Dual anticoagulant/antiplatelet persulfated small molecules

Marta Correia-da-Silva; Emília Sousa; Bárbara Duarte; Franklim Marques; Luís M. Cunha-Ribeiro; Madalena Pinto

A new series of persulfated compounds was synthesized and assayed for in vitro anticoagulant and antiplatelet activities, which may be useful in the treatment of both venous and arterial thrombosis. Persulfation of polyphenolic components of wine, coumarins and other structurally diverse small molecules was achieved with triethylamine-sulphur trioxide adduct. The derivatives were highly effective in increasing the APTT, being trans-resveratrol 3-ß-D-glucopyranoside persulfate (15) the most potent (APTT2=1.5×10(-4) M), and were able to completely block the clotting process at the highest concentration. Compound 15 showed good stability in human plasma and anticoagulation effects in whole blood. trans-Resveratrol 3-ß-D-glucopyranoside persulfate (15) and a series of polysulfated oligoflavonoids (1-4) also exhibited antiplatelet activity by inhibition of arachidonic acid and ADP-induced platelet aggregation.


Bioorganic & Medicinal Chemistry | 2017

A novel curcumin derivative which inhibits P-glycoprotein, arrests cell cycle and induces apoptosis in multidrug resistance cells.

Vanessa Lopes-Rodrigues; Ana Oliveira; Marta Correia-da-Silva; Madalena Pinto; Raquel T. Lima; Emília Sousa; M. Helena Vasconcelos

Cancer multidrug resistance (MDR) is a major limitation to the success of cancer treatment and is highly associated with the overexpression of drug efflux pumps such as P-glycoprotein (P-gp). In order to achieve more effective chemotherapeutic treatments, it is important to develop P-gp inhibitors to block/decrease its activity. Curcumin (1) is a secondary metabolite isolated from the turmeric of Curcuma longa L.. Diverse biological activities have been identified for this compound, particularly, MDR modulation in various cancer cell models. However, curcumin (1) has low chemical stability, which severely limits its application. In order to improve stability and P-gp inhibitory effect, two potential more stable curcumin derivatives were synthesized as building blocks, followed by several curcumin derivatives. These compounds were then analyzed in terms of antitumor and anti-P-gp activity, in two MDR and sensitive tumor lines (from chronic myeloid leukemia and non-small cell lung cancer). We identified from a series of curcumin derivatives a novel curcumin derivative (1,7-bis(3-methoxy-4-(prop-2-yn-1-yloxy)phenyl)hepta-1,6-diene-3,5-dione, 10) with more potent antitumor and anti-P-gp activity than curcumin (1). This compound (10) was shown to promote cell cycle arrest (at the G2/M phase) and induce apoptosis in the MDR chronic myeloid leukemia cell line. Therefore it is a really interesting P-gp inhibitor due to its ability to inhibit both P-gp function and expression.


Chemical Biology & Drug Design | 2013

Sulfated small molecules targeting eBV in Burkitt lymphoma: from in silico screening to the evidence of in vitro effect on viral episomal DNA.

Raquel T. Lima; Hugo Seca; Andreia Palmeira; Miguel X. Fernandes; Felipe Castro; Marta Correia-da-Silva; Maria São José Nascimento; Emília Sousa; Madalena Pinto; M. Helena Vasconcelos

Epstein–Barr virus (EBV) infects more than 90% of the world population. Following primary infection, Epstein–Barr virus persists in an asymptomatic latent state. Occasionally, it may switch to lytic infection. Latent EBV infection has been associated with several diseases, such as Burkitt lymphoma (BL). To date, there are no available drugs to target latent EBV, and the existing broad‐spectrum antiviral drugs are mainly active against lytic viral infection. Thus, using computational molecular docking, a virtual screen of a library of small molecules, including xanthones and flavonoids (described with potential for antiviral activity against EBV), was carried out targeting EBV proteins. The more interesting molecules were selected for further computational analysis, and sub‐sequently, the compounds were tested in the Raji (BL) cell line, to evaluate their activity against latent EBV. This work identified three novel sulfated small molecules capable of decreasing EBV levels in a BL. Therefore, the in silico screening presents a good approach for the development of new anti‐EBV agents.


Seminars in Cancer Biology | 2017

Anticancer and cancer preventive compounds from edible marine organisms

Marta Correia-da-Silva; Emília Sousa; Madalena Pinto; Anake Kijjoa

A direct impact of food on health, which demonstrates that dietary habit is one of the most important determinants of chronic diseases such as cancers, has led to an increased interest of the consumers toward natural bioactive compounds as functional ingredients or nutraceuticals. Epidemiological studies revealed that the populations of many Asian countries with high consumption of fish and seafood have low prevalence of particular type of cancers such as lung, breast, colorectal and prostate cancers. This observation has led to extensive investigations of the benefits of compounds present in edible marine organisms such as fish, marine invertebrates (mollusks, echinoderms) and marine algae as cancer chemopreventive agents. Interestingly, many of these marine organisms not only constitute as seafood delicacy but also as ingredients used in folk medicine of some East and Southeast Asian countries. The results of the investigations on extracts and compounds from fish (cods, anchovy, eel and also fish protein hydrolysates), mollusks (mussel, oyster, clams and abalone), as well as from sea cucumbers on the in vivo/in vitro anticancer/antitumor activities can, in part, support the health benefits of these edible marine organisms.


Scientific Reports | 2017

Antifouling potential of Nature-inspired sulfated compounds

Joana R. Almeida; Marta Correia-da-Silva; Emília Sousa; Jorge T. Antunes; Madalena Pinto; Vitor Vasconcelos; Isabel Cunha

Natural products with a sulfated scaffold have emerged as antifouling agents with low or nontoxic effects to the environment. In this study 13 sulfated polyphenols were synthesized and tested for antifouling potential using the anti-settlement activity of mussel (Mytilus galloprovincialis) plantigrade post-larvae and bacterial growth inhibition towards four biofilm-forming bacterial strains. Results show that some of these Nature-inspired compounds were bioactive, particularly rutin persulfate (2), 3,6-bis(β-D-glucopyranosyl) xanthone persulfate (6), and gallic acid persulfate (12) against the settlement of plantigrades. The chemical precursors of sulfated compounds 2 and 12 were also tested for anti-settlement activity and it was possible to conclude that bioactivity is associated with sulfation. While compound 12 showed the most promising anti-settlement activity (EC50 = 8.95 μg.mL−1), compound 2 also caused the higher level of growth inhibition in bacteria Vibrio harveyi (EC20 = 12.5 μg.mL−1). All the three bioactive compounds 2, 6, and 12 were also found to be nontoxic to the non target species Artemia salina (<10% mortality at 250 μM) and Vibrio fischeri (LC50 > 1000 μg.mL−1). This study put forward the relevance of synthesizing non-natural sulfated small molecules to generate new nontoxic antifouling agents.


Pharmaceuticals | 2016

Strategies to Overcome Heparins' Low Oral Bioavailability

Ana Rita Neves; Marta Correia-da-Silva; Emília Sousa; Madalena Pinto

Even after a century, heparin is still the most effective anticoagulant available with few side effects. The poor oral absorption of heparins triggered the search for strategies to achieve oral bioavailability since this route has evident advantages over parenteral administration. Several approaches emerged, such as conjugation of heparins with bile acids and lipids, formulation with penetration enhancers, and encapsulation of heparins in micro and nanoparticles. Some of these strategies appear to have potential as good delivery systems to overcome heparin’s low oral bioavailability. Nevertheless, none have reached the market yet. Overall, this review aims to provide insights regarding the oral bioavailability of heparin.


Journal of Molecular Endocrinology | 2018

Sources and Biological Activities of Marine Sulfated Steroids

Francisca Carvalhal; Marta Correia-da-Silva; Maria Emília Sousa; Madalena Pinto; Anake Kijjoa

Marine environment is rich in structurally unique molecules and can be an inspiring source of novel drugs. Currently, six marine-derived drugs are in the market with FDA approval and several more are in the clinical pipeline. Structurally diverse and complex secondary metabolites have been isolated from the marine world and these include sulfated steroids. Biological activities of nearly 150 marine sulfated steroids reported from 1978 to 2017 are compiled and described, namely antimicrobial, antitumor, cardiovascular and antifouling activities. Structure-activity relationship for each activity is discussed.

Collaboration


Dive into the Marta Correia-da-Silva's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge