Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marta E. Alarcón-Riquelme is active.

Publication


Featured researches published by Marta E. Alarcón-Riquelme.


Nature Genetics | 2008

Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM , PXK , KIAA1542 and other loci

John B. Harley; Marta E. Alarcón-Riquelme; Lindsey A. Criswell; Chaim O. Jacob; Robert P. Kimberly; Kathy L. Moser; Betty P. Tsao; Timothy J. Vyse; Carl D. Langefeld; Swapan K. Nath; Joel M. Guthridge; Beth L. Cobb; Daniel B. Mirel; Miranda C. Marion; Adrienne H. Williams; Jasmin Divers; Wei Wang; Summer G Frank; Bahram Namjou; Stacey Gabriel; Annette Lee; Peter K. Gregersen; Timothy W. Behrens; Kimberly E. Taylor; Michelle M. A. Fernando; Raphael Zidovetzki; Patrick M. Gaffney; Jeffrey C. Edberg; John D. Rioux; Joshua O. Ojwang

Systemic lupus erythematosus (SLE) is a common systemic autoimmune disease with complex etiology but strong clustering in families (λS = ∼30). We performed a genome-wide association scan using 317,501 SNPs in 720 women of European ancestry with SLE and in 2,337 controls, and we genotyped consistently associated SNPs in two additional independent sample sets totaling 1,846 affected women and 1,825 controls. Aside from the expected strong association between SLE and the HLA region on chromosome 6p21 and the previously confirmed non-HLA locus IRF5 on chromosome 7q32, we found evidence of association with replication (1.1 × 10−7 < Poverall < 1.6 × 10−23; odds ratio = 0.82–1.62) in four regions: 16p11.2 (ITGAM), 11p15.5 (KIAA1542), 3p14.3 (PXK) and 1q25.1 (rs10798269). We also found evidence for association (P < 1 × 10−5) at FCGR2A, PTPN22 and STAT4, regions previously associated with SLE and other autoimmune diseases, as well as at ⩾9 other loci (P < 2 × 10−7). Our results show that numerous genes, some with known immune-related functions, predispose to SLE.


Nature Genetics | 2002

A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans

Ludmila Prokunina; Casimiro Castillejo-López; Fredrik Öberg; Iva Gunnarsson; Louise Berg; Veronica Magnusson; Anthony J. Brookes; Dmitry Tentler; Helga Kristjansdottir; Gerdur Gröndal; Anne Isine Bolstad; Elisabet Svenungsson; Ingrid E. Lundberg; Gunnar Sturfelt; Andreas Jönssen; Lennart Truedsson; Guadalupe Lima; Jorge Alcocer-Varela; Roland Jonsson; Ulf Gyllensten; John B. Harley; Donato Alarcón-Segovia; Kristjan Steinsson; Marta E. Alarcón-Riquelme

Systemic lupus erythematosus (SLE, OMIM 152700) is a complex autoimmune disease that affects 0.05% of the Western population, predominantly women. A number of susceptibility loci for SLE have been suggested in different populations, but the nature of the susceptibility genes and mutations is yet to be identified. We previously reported a susceptibility locus (SLEB2) for Nordic multi-case families. Within this locus, the programmed cell death 1 gene (PDCD1, also called PD-1) was considered the strongest candidate for association with the disease. Here, we analyzed 2,510 individuals, including members of five independent sets of families as well as unrelated individuals affected with SLE, for single-nucleotide polymorphisms (SNPs) that we identified in PDCD1. We show that one intronic SNP in PDCD1 is associated with development of SLE in Europeans (found in 12% of affected individuals versus 5% of controls; P = 0.00001, r.r. (relative risk) = 2.6) and Mexicans (found in 7% of affected individuals versus 2% of controls; P = 0.0009, r.r. = 3.5). The associated allele of this SNP alters a binding site for the runt-related transcription factor 1 (RUNX1, also called AML1) located in an intronic enhancer, suggesting a mechanism through which it can contribute to the development of SLE in humans.


Nature Genetics | 2006

A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus.

Robert R. Graham; Sergey V. Kozyrev; Emily C. Baechler; M. V. Prasad Linga Reddy; Robert M. Plenge; Jason W. Bauer; Ward Ortmann; Thearith Koeuth; Ma Francisca Gonzalez Escribano; Bernardo A. Pons-Estel; Michelle Petri; Mark J. Daly; Peter K. Gregersen; Javier Martin; David Altshuler; Timothy W. Behrens; Marta E. Alarcón-Riquelme

Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by activation of the type I interferon (IFN) pathway. Here we convincingly replicate association of the IFN regulatory factor 5 (IRF5) rs2004640 T allele with SLE in four independent case-control cohorts (P = 4.4 × 10−16) and by family-based transmission disequilibrium test analysis (P = 0.0006). The rs2004640 T allele creates a 5′ donor splice site in an alternate exon 1 of IRF5, allowing expression of several unique IRF5 isoforms. We also identify an independent cis-acting variant associated with elevated expression of IRF5 and linked to the exon 1B splice site. Haplotypes carrying the variant associated with elevated expression and lacking the exon 1B donor site do not confer risk of SLE. Thus, a common IRF5 haplotype driving elevated expression of multiple unique isoforms of IRF5 is an important genetic risk factor for SLE, establishing a causal role for type I IFN pathway genes in human autoimmunity.


Nature Genetics | 2008

Functional variants in the B-cell gene BANK1 are associated with systemic lupus erythematosus

Sergey V. Kozyrev; Anna Karin Abelson; Jérôme Wojcik; Ammar Zaghlool; M. V. Prasad Linga Reddy; Elena Sánchez; Iva Gunnarsson; Elisabet Svenungsson; Gunnar Sturfelt; Andreas Jönsen; Lennart Truedsson; Bernardo A. Pons-Estel; Torsten Witte; Sandra D'Alfonso; Nadia Barrizzone; Maria Giovanna Danieli; Carmen Gutiérrez; Ana Suárez; Peter Junker; Helle Laustrup; María Francisca González-Escribano; Javier Martin; Hadi Abderrahim; Marta E. Alarcón-Riquelme

Systemic lupus erythematosus (SLE) is a prototypical autoimmune disease characterized by production of autoantibodies and complex genetic inheritance. In a genome-wide scan using 85,042 SNPs, we identified an association between SLE and a nonsynonymous substitution (rs10516487, R61H) in the B-cell scaffold protein with ankyrin repeats gene, BANK1. We replicated the association in four independent case-control sets (combined P = 3.7 × 10−10; OR = 1.38). We analyzed BANK1 cDNA and found two isoforms, one full-length and the other alternatively spliced and lacking exon 2 (Δ2), encoding a protein without a putative IP3R-binding domain. The transcripts were differentially expressed depending on a branch point–site SNP, rs17266594, in strong linkage disequilibrium (LD) with rs10516487. A third associated variant was found in the ankyrin domain (rs3733197, A383T). Our findings implicate BANK1 as a susceptibility gene for SLE, with variants affecting regulatory sites and key functional domains. The disease-associated variants could contribute to sustained B cell–receptor signaling and B-cell hyperactivity characteristic of this disease.


Human Mutation | 2009

Ancestry Informative Marker Sets for Determining Continental Origin and Admixture Proportions in Common Populations in America

Roman Kosoy; Rami Nassir; Chao Tian; Phoebe A. White; Lesley M. Butler; Gabriel Silva; Rick A. Kittles; Marta E. Alarcón-Riquelme; Peter K. Gregersen; John W. Belmont; Francisco M. De La Vega; Michael F. Seldin

To provide a resource for assessing continental ancestry in a wide variety of genetic studies, we identified, validated, and characterized a set of 128 ancestry informative markers (AIMs). The markers were chosen for informativeness, genome‐wide distribution, and genotype reproducibility on two platforms (TaqMan® assays and Illumina arrays). We analyzed genotyping data from 825 subjects with diverse ancestry, including European, East Asian, Amerindian, African, South Asian, Mexican, and Puerto Rican. A comprehensive set of 128 AIMs and subsets as small as 24 AIMs are shown to be useful tools for ascertaining the origin of subjects from particular continents, and to correct for population stratification in admixed population sample sets. Our findings provide general guidelines for the application of specific AIM subsets as a resource for wide application. We conclude that investigators can use TaqMan assays for the selected AIMs as a simple and cost efficient tool to control for differences in continental ancestry when conducting association studies in ethnically diverse populations. Hum Mutat 0,1–10, 2008.


Nature Genetics | 2008

A nonsynonymous functional variant in integrin-|[alpha]|M (encoded by ITGAM) is associated with systemic lupus erythematosus

Swapan K. Nath; Shizhong Han; Xana Kim-Howard; Jennifer A. Kelly; Parvathi Viswanathan; Gary S. Gilkeson; Wei Chen; Cheng Zhu; Rodger P. McEver; Robert P. Kimberly; Marta E. Alarcón-Riquelme; Timothy J. Vyse; Quan Zhen Li; Edward K. Wakeland; Joan T. Merrill; Judith A. James; Kenneth M. Kaufman; Joel M. Guthridge; John B. Harley

We identified and replicated an association between ITGAM (CD11b) at 16p11.2 and risk of systemic lupus erythematosus (SLE) in 3,818 individuals of European descent. The strongest association was at a nonsynonymous SNP, rs1143679 (P = 1.7 × 10−17, odds ratio = 1.78). We further replicated this association in two independent samples of individuals of African descent (P = 0.0002 and 0.003; overall meta-analysis P = 6.9 × 10−22). The genetic association between ITGAM and SLE implicates the αMβ2-integrin adhesion pathway in disease development.


Nature Genetics | 2011

Association of a functional variant downstream of TNFAIP3 with systemic lupus erythematosus

Indra Adrianto; Feng Wen; Amanda Templeton; Graham B. Wiley; Jarrod B. King; Christopher J. Lessard; Jared S. Bates; Yanqing Hu; Jennifer A. Kelly; Kenneth M. Kaufman; Joel M. Guthridge; Marta E. Alarcón-Riquelme; Juan-Manuel Anaya; Sang-Cheol Bae; So-Young Bang; Susan A. Boackle; Elizabeth E. Brown; Michelle Petri; Caroline J. Gallant; Rosalind Ramsey-Goldman; John D. Reveille; Luis M. Vilá; Lindsey A. Criswell; Jeffrey C. Edberg; Barry I. Freedman; Peter K. Gregersen; Gary S. Gilkeson; Chaim O. Jacob; Judith A. James; Diane L. Kamen

Systemic lupus erythematosus (SLE, MIM152700) is an autoimmune disease characterized by self-reactive antibodies resulting in systemic inflammation and organ failure. TNFAIP3, encoding the ubiquitin-modifying enzyme A20, is an established susceptibility locus for SLE. By fine mapping and genomic re-sequencing in ethnically diverse populations, we fully characterized the TNFAIP3 risk haplotype and identified a TT>A polymorphic dinucleotide (deletion T followed by a T to A transversion) associated with SLE in subjects of European (P = 1.58 × 10−8, odds ratio = 1.70) and Korean (P = 8.33 × 10−10, odds ratio = 2.54) ancestry. This variant, located in a region of high conservation and regulatory potential, bound a nuclear protein complex composed of NF-κB subunits with reduced avidity. Further, compared with the non-risk haplotype, the haplotype carrying this variant resulted in reduced TNFAIP3 mRNA and A20 protein expression. These results establish this TT>A variant as the most likely functional polymorphism responsible for the association between TNFAIP3 and SLE.


PLOS Genetics | 2011

Differential Genetic Associations for Systemic Lupus Erythematosus Based on Anti–dsDNA Autoantibody Production

Sharon A. Chung; Kimberly E. Taylor; Robert R. Graham; Joanne Nititham; Annette Lee; Ward Ortmann; Chaim O. Jacob; Marta E. Alarcón-Riquelme; Betty P. Tsao; John B. Harley; Patrick M. Gaffney; Kathy L. Moser; Michelle Petri; F. Yesim Demirci; M. Ilyas Kamboh; Susan Manzi; Peter K. Gregersen; Carl D. Langefeld; Timothy W. Behrens; Lindsey A. Criswell

Systemic lupus erythematosus (SLE) is a clinically heterogeneous, systemic autoimmune disease characterized by autoantibody formation. Previously published genome-wide association studies (GWAS) have investigated SLE as a single phenotype. Therefore, we conducted a GWAS to identify genetic factors associated with anti–dsDNA autoantibody production, a SLE–related autoantibody with diagnostic and clinical importance. Using two independent datasets, over 400,000 single nucleotide polymorphisms (SNPs) were studied in a total of 1,717 SLE cases and 4,813 healthy controls. Anti–dsDNA autoantibody positive (anti–dsDNA +, n = 811) and anti–dsDNA autoantibody negative (anti–dsDNA –, n = 906) SLE cases were compared to healthy controls and to each other to identify SNPs associated specifically with these SLE subtypes. SNPs in the previously identified SLE susceptibility loci STAT4, IRF5, ITGAM, and the major histocompatibility complex were strongly associated with anti–dsDNA + SLE. Far fewer and weaker associations were observed for anti–dsDNA – SLE. For example, rs7574865 in STAT4 had an OR for anti–dsDNA + SLE of 1.77 (95% CI 1.57–1.99, p = 2.0E-20) compared to an OR for anti–dsDNA – SLE of 1.26 (95% CI 1.12–1.41, p = 2.4E-04), with pheterogeneity<0.0005. SNPs in the SLE susceptibility loci BANK1, KIAA1542, and UBE2L3 showed evidence of association with anti–dsDNA + SLE and were not associated with anti–dsDNA – SLE. In conclusion, we identified differential genetic associations with SLE based on anti–dsDNA autoantibody production. Many previously identified SLE susceptibility loci may confer disease risk through their role in autoantibody production and be more accurately described as autoantibody propensity loci. Lack of strong SNP associations may suggest that other types of genetic variation or non-genetic factors such as environmental exposures have a greater impact on susceptibility to anti–dsDNA – SLE.


Nature Genetics | 2015

Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus

James Bentham; David L. Morris; Deborah S. Cunninghame Graham; Christopher L. Pinder; Philip Tombleson; Timothy W. Behrens; Javier Martin; Benjamin P. Fairfax; Julian C. Knight; Lingyan Chen; Joseph Replogle; Ann-Christine Syvänen; Lars Rönnblom; Robert R. Graham; Joan E. Wither; John D. Rioux; Marta E. Alarcón-Riquelme; Timothy J. Vyse

Systemic lupus erythematosus (SLE) is a genetically complex autoimmune disease characterized by loss of immune tolerance to nuclear and cell surface antigens. Previous genome-wide association studies (GWAS) had modest sample sizes, reducing their scope and reliability. Our study comprised 7,219 cases and 15,991 controls of European ancestry, constituting a new GWAS, a meta-analysis with a published GWAS and a replication study. We have mapped 43 susceptibility loci, including ten new associations. Assisted by dense genome coverage, imputation provided evidence for missense variants underpinning associations in eight genes. Other likely causal genes were established by examining associated alleles for cis-acting eQTL effects in a range of ex vivo immune cells. We found an over-representation (n = 16) of transcription factors among SLE susceptibility genes. This finding supports the view that aberrantly regulated gene expression networks in multiple cell types in both the innate and adaptive immune response contribute to the risk of developing SLE.


Genes and Immunity | 2011

Evaluation of the TREX1 gene in a large multi-ancestral lupus cohort

Bahram Namjou; P. H. Kothari; Jennifer A. Kelly; Stuart B. Glenn; Joshua O. Ojwang; Adam Adler; Marta E. Alarcón-Riquelme; Caroline J. Gallant; Susan A. Boackle; Lindsey A. Criswell; Robert P. Kimberly; Elizabeth E. Brown; Jeffrey C. Edberg; Anne M. Stevens; Chaim O. Jacob; Betty P. Tsao; Gary S. Gilkeson; Diane L. Kamen; Joan T. Merrill; Michelle Petri; R. R. Goldman; Luis M. Vilá; J-M Anaya; Timothy B. Niewold; J. Martin; Bernardo A. Pons-Estel; José Mario Sabio; José Luis Callejas; Timothy J. Vyse; S.-C. Bae

Systemic lupus erythematosus (SLE) is a prototypic autoimmune disorder with a complex pathogenesis in which genetic, hormonal and environmental factors have a role. Rare mutations in the TREX1 gene, the major mammalian 3′–5′ exonuclease, have been reported in sporadic SLE cases. Some of these mutations have also been identified in a rare pediatric neurological condition featuring an inflammatory encephalopathy known as Aicardi–Goutières syndrome (AGS). We sought to investigate the frequency of these mutations in a large multi-ancestral cohort of SLE cases and controls. A total of 40 single-nucleotide polymorphisms (SNPs), including both common and rare variants, across the TREX1 gene, were evaluated in ∼8370 patients with SLE and ∼7490 control subjects. Stringent quality control procedures were applied, and principal components and admixture proportions were calculated to identify outliers for removal from analysis. Population-based case–control association analyses were performed. P-values, false-discovery rate q values, and odds ratios (OR) with 95% confidence intervals (CI) were calculated. The estimated frequency of TREX1 mutations in our lupus cohort was 0.5%. Five heterozygous mutations were detected at the Y305C polymorphism in European lupus cases but none were observed in European controls. Five African cases incurred heterozygous mutations at the E266G polymorphism and, again, none were observed in the African controls. A rare homozygous R114H mutation was identified in one Asian SLE patient, whereas all genotypes at this mutation in previous reports for SLE were heterozygous. Analysis of common TREX1 SNPs (minor allele frequency (MAF)>10%) revealed a relatively common risk haplotype in European SLE patients with neurological manifestations, especially seizures, with a frequency of 58% in lupus cases compared with 45% in normal controls (P=0.0008, OR=1.73, 95% CI=1.25–2.39). Finally, the presence or absence of specific autoantibodies in certain populations produced significant genetic associations. For example, a strong association with anti-nRNP was observed in the European cohort at a coding synonymous variant rs56203834 (P=2.99E−13, OR=5.2, 95% CI=3.18–8.56). Our data confirm and expand previous reports and provide additional support for the involvement of TREX1 in lupus pathogenesis.

Collaboration


Dive into the Marta E. Alarcón-Riquelme's collaboration.

Top Co-Authors

Avatar

Jennifer A. Kelly

Oklahoma Medical Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Robert P. Kimberly

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

John B. Harley

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michelle Petri

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Patrick M. Gaffney

Oklahoma Medical Research Foundation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chaim O. Jacob

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Kenneth M. Kaufman

Cincinnati Children's Hospital Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge