Marta Elena Roque
Universidad Nacional del Sur
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marta Elena Roque.
Lipids | 1992
Norma M. Giusto; Marta Elena Roque; Mónica G. Ilincheta de Boschero
Sphingomyelin (SPH) content and composition in different regions of the brain were analyzed in 2.5, 21.5 and 26.5-month-old rats. SPH content increased in the cerebral hemispheres, cerebellum and medulla oblongata plus pons as age increased. The highest SPH content was observed in 26.5-month-old rats, with values increasing by 1.74, 2.75 and 0.88-fold, respectively, over 2.5-month-old rats. The SPH fatty acid composition of brains from aged rats was markedly different from that of adult rats. Between 2.5 and 26.5 months of age the monoenoic/saturated fatty acid ratio increased from 0.22, 0.30 and 0.54 to 0.54, 0.68 and 1.03 in cerebral hemispheres, cerebellum and medulla oblongata plus pons, respectively. The percentage and content of fatty acids longer than 22 carbon atoms esterified to SPH increased with age from 18, 26 and 44 to 48, 52 and 62 mole % in cerebral hemispheres, cerebellum and medulla oblongata plus pons in 26.5-month-old rats. In subcortical white matter from aged rats, monoenoic 22–26 carbon atom fatty acids increased more than the saturated ones in 21.5-month-old rats relative to 2.5-month-old rats.In vitro synthesis of SPH from [3H]choline and [3H]palmitic acid in cerebral cortex and cerebellum showed no significant differences between adult rats and those 21.5 months of age. In cerebellum and in cerebral cortex, [14C] serine incorporation increased in aged rats. The results suggest that aging induces increases in both SPH content and in the monoenoic/saturated fatty acid ratio. These increases are quantitatively different in all brain regions analyzed.
American Journal of Physiology-renal Physiology | 2008
Tania Veuthey; María Cecilia D'Anna; Marta Elena Roque
It is known that renal tissue plays a role in normal iron homeostasis. The current study examines kidney function in iron metabolism under hemolytic anemia studying renal expression of Prohepcidin, Ferroportin (MTP1), and divalent metal transporter 1 (DMT1). The relationship between these proteins and iron pigments was also investigated. Immunohistochemical procedures to study renal expression of Prohepcidin, MTP1, and DMT1 were performed in healthy and anemic mice. Renal tissue iron was determined by Prussian blue iron staining. To assess anemia evolution and erythropoietic recovery, we used conventional tests. In healthy mice, Prohepcidin expression was marked in proximal tubules and inner medulla and absent in outer medulla. Cortical tissue of healthy mice also showed MTP1 immunostaining, mainly in the S2 segment of proximal tubules. Medullar tissue showed MTP1 expression in the inner zone. In addition, S2 segments showed intense DMT1 immunoreactivity with homogeneous DMT1 distribution throughout renal medulla. The main cortical findings in hemolytic anemia were in S2 segments of proximal tubules where we found that decreased Prohepcidin expression coincided with an increment in Ferroportin and DMT1 expression. This expression pattern was concomitant with increased iron in the same tubular zone. However, in medullar tissue both Prohepcidin and MTP1 decreased and DMT1 was detected mainly in larger diameter tubules. Our findings clearly demonstrate that in hemolytic anemia, renal Prohepcidin acts in coordination with renal Ferroportin and DMT1, indicating the key involvement of kidney in iron homeostasis when iron demand is high. Further research is required to learn more about these regulatory mechanisms.
Journal of Histochemistry and Cytochemistry | 2009
María Cecilia D'Anna; Tania Veuthey; Marta Elena Roque
Ferroportin (FPN), the only iron exporter identified to date, participates in iron release from enterocytes and macrophages, regulating its absorption and recycling. We used a murine model of experimental hemolytic anemia to study adaptive changes in the localization of FPN in duodenum, liver, and spleen. FPN was assessed by IHC in healthy and anemic mice using rabbit anti-mouse FPN polyclonal antibodies. Goat-labeled polymer-horseradish peroxidase anti-rabbit Envision+System (DAB) was used as secondary antibody. Tissue iron was studied by Prussian blue iron staining. Anemia evolution and erythropoietic recovery was assessed using conventional hematological tests. Healthy mice showed mainly supra-nuclear expression of FPN in enterocytes and a weak basolateral expression, whereas in anemic mice, the expression was detected mainly at the basolateral membrane (days 4 and 5). Red pulp macrophages of healthy mice showed FPN-hemosiderin colocalization. In the liver of healthy mice, FPN was mainly cytoplasmic, whereas in anemic mice, it was redistributed to the cell membrane. Our findings clearly show that anemia induces adaptive changes in FPN expression, contributing to anemia restoration by increasing available iron. FPN expression in the membrane is the main pathway of iron release. Our data indicate that iron homeostasis in vivo is maintained through the coordinated expression of this iron exporter in both intestinal and phagocytic cells.
Experimental Gerontology | 2000
M.G. Ilincheta de Boschero; Marta Elena Roque; Gabriela A. Salvador; Norma M. Giusto
Morphological and biochemical changes take place in the membrane of aged brain. In particular, studies on aged rats report alterations in brain phospholipid synthesis and in phospholipid-specific fatty acid composition. However, no significant changes in main phospholipid class content have been reported in aged brain, possibly owing to alterations in the alternative pathways for phospholipid synthesis during aging. Therefore, the present study was designed to determine the effect of aging on the enzyme activities responsible for phospholipid synthesis by alternative pathways. Indifferent brain areas of adult (3.5-month-old) and aged (28.5-month-old) rats we examined: 1) the activity of base exchange enzymes, which is a calcium-dependent, energy-independent and calcium stimulated enzymatic pathway; 2) phosphatidylethanolamine (PE) synthesis by phosphatidylserine decarboxylase activity (PSD); 3) phosphatidylcholine (PC) synthesis by transfer of methyl groups to endogenous PE by phosphatidylethanolamine N-methyltransferase activity (PEMT); 4) the synthesis of phosphatidylglycerol (PG) through phospholipase D (PLD) activity. Because the dependence on and the stimulation by calcium of base-exchange reactions is a well known mechanism and alterations in calcium levels in rat brain have been reported, we decided to investigate PS synthesis in the presence of endogenous and exogenous calcium (2.5mM). PS synthesis increased in cerebral cortex (CC) and cerebellum (CRBL) of aged rats with respect to adult rats in basal conditions (without the addition of exogenous calcium), but more significant changes were observed in serine base exchange activity during aging when exogenous calcium was added. PEMT activity in aged CC increased by 100%, the principal modification being observed in the first methylated product of the sequential reaction. Furthermore, the transphosphatidyl reaction was higher in aged brain as indicated by the increased PG synthesis. Our findings allow us to conclude that age affects some alternative pathways for phospholipid synthesis in the central nervous system, and indicate the presence of a compensatory mechanism to provide a pool of phospholipid classes for the maintenance of cellular membrane lipid composition during aging.
Neurochemical Research | 1997
Norma M. Giusto; P. I. Castagnet; M. G. Ilincheta; Marta Elena Roque; Susana J. Pasquaré
Lipid metabolism in photoreceptor rod outer segments has attracted considerable attention because of its importance in providing the appropriate environment for supporting an efficient phototransduction mechanism. Recent studies suggest that lipid metabolism in these membranes is involved in the generation of second messengers and in signal transduction mechanisms. Phospholipid turnover is tightly regulated by phosphorylation-dephosphorylation reactions and light, and provides, in turn, with molecules capable of activating protein kinases and cellular processes such as membrane fusion or light-adaptation. These findings suggest that photoreceptor membrane lipids are more than just important structural components of the visual cell rod outer segment.
Comparative Biochemistry and Physiology B | 1998
Marta Elena Roque; Susana J. Pasquaré; P.I. Castagnet; Norma M. Giusto
Phosphatidate phosphohydrolase (PAPase) and diacylglycerol lipase (DGL) enzymatic activities were found to be differently affected by preincubation of rod outer segments (ROS) under protein phosphorylation or dephosphorylation conditions in darkness or in light. Under protein kinase C (PKC) phosphorylation conditions, PAPase and DGL were inhibited in darkness and in light. The inhibitory effect on PAPase and DGL activities by PKC phosphorylation in the presence of light was more pronounced when the activities were compared with the activities in control membranes determined in the presence of EGTA. The addition of PKC activators such as phorbol-12,13-dibutyrate and dioctanoylglycerol (DOG) instead of DG produced the same pattern of changes in enzymatic activities. Pretreatment of ROS membranes with cAMP-dependent protein kinase (PKA) produced a significant increase in both enzymatic activities in the presence of light. No changes were observed when ROS proteins were phosphorylated by PKA in the dark. Dephosphorylation of ROS membranes with alkaline phosphatase resulted in a decrease in PAPase activity that was more marked under light than under dark conditions. DGL activity was not modified under dephosphorylation conditions. These findings suggest that the metabolization of phosphatidic acid in isolated ROS is differently affected by protein phosphorylation and dephosphorylation reactions.
Comparative Biochemistry and Physiology B | 1998
P.I. Castagnet; Marta Elena Roque; Susana J. Pasquaré; Norma M. Giusto
The activities of enzymes involved in lipid metabolism--phospholipase A2 (PLA2) and phosphatidylethanolamine N-methyltransferase (PE N-MTase)--were found to be differently affected by pre-incubation of rod outer segments (ROS) under protein phosphorylating or dephosphorylating conditions. Exposure to cAMP-dependent protein kinase (PKA), under dark or light conditions, produced a significant increase in PE N-MTase activity, whereas PLA2 activity decreased. Under standard protein kinase C (PKC) phosphorylating conditions in light, PE N-MTase activity was stimulated and PLA2 activity was not affected. When the assays were performed in the dark, both enzymatic activities were unaffected when compared to the corresponding controls. Incubation of ROS membranes in light in the presence of PKC activators phorbol 12,13-dibutyrate (PDBu) and dioctanoylglycerol (DOG) resulted in the same pattern of changes in enzyme activities as described for standard PKC phosphorylating condition. Pre-incubation of membranes with the PKC inhibitor H-7 reduced the stimulation of PDBu on PE N-MTase activity, and had no effect on PLA2 activity in ROS membranes incubated with the phorbol ester. Pre-treatment of isolated ROS with alkaline phosphatase resulted in decreased PE N-MTase activity and produced a significant stimulation of PLA2 activity under dark as well as under light conditions when compared to the corresponding controls. These findings suggest that ROS protein phosphorylation and dephosphorylation modulates PE N-MTase and PLA2 activities in isolated ROS, and that these activities are independently and specifically modulated by particular kinases. Furthermore, dephosphorylation of ROS proteins has the opposite effect to that produced by protein phosphorylation on the enzymes studied.
Acta Histochemica | 2014
Gisela Giorgi; Marta Elena Roque
It is well known that the iron content of the body is tightly regulated. Iron excess induces adaptive changes that are differentially regulated in each tissue. The pancreas is particularly susceptible to iron-related disorders. We studied the expression and regulation of key iron proteins in the pancreas, duodenum and liver, using an animal model of iron overload (female CF1 mice injected i.p. with iron saccharate, colloidal iron form). Divalent metal transporter 1, prohepcidin and ferritin (pancreas, duodenum, liver) were assessed by immunohistochemistry; divalent metal transporter 1 (pancreas, duodenum) by Western blot. In the iron overloaded mice, prohepcidin expression increased in islets of Langerhans and hepatocytes, and divalent metal transporter 1 expression decreased in cells of islets and in enterocytes. In the iron overloaded mice, ferritin expression decreased in islets of Langerhans and increased in acinar cells; hemosiderin was localized in connective tissue cells. The inverse relationship between divalent metal transporter 1 and prohepcidin may indicate a negative regulation by hepcidin, and hence reduction of iron stores in islets of Langerhans. Our data showed that in iron overloaded mice model, induced by colloidal iron form, a coordinated expression of key iron proteins in the pancreas, duodenum and liver may occur. Further research will be necessary to determine the adaptive responses induced by iron in the pancreas.
Experimental Physiology | 2015
Gisela Giorgi; María Cecilia D'Anna; Marta Elena Roque
What is the central question of this study? The aim was to explore the role and hitherto unclear mechanisms of action of iron proteins in protecting the lung against the harmful effects of iron accumulation and the ability of pulmonary cells to mobilize iron in iron deficiency. What is the main finding and its importance? We show that pulmonary hepcidin appears not to modify cellular iron mobilization in the lung. We propose pathways for supplying iron to the lung in iron deficiency and for protecting the lung against iron excess in iron overload, mediated by the co‐ordinated action of iron proteins, such as divalent metal transporter 1, ZRT‐IRE‐like‐protein 14, transferrin receptor, ferritin, haemochromatosis‐associated protein and ferroportin.
International Journal of Morphology | 2011
María D´Anna; Gisela Giorgi; Marta Elena Roque
El duodeno, bazo e higado desempenan un rol clave en el balance de Fe del organismo y son los mayores sitios de expresion de ferroportina (FPN). Regulaciones especificas entre FPN y hepcidina son las responsables de los cambios observados en condiciones fisiopatologicas como la inflamacion. Nuestro objetivo fue estudiar los efectos in vivo de la inflamacion aguda inducida con turpentina sobre la expresion de FPN y su relacion con prohepcidina y la movilizacion de hierro. Los procedimientos inmunohistoquimicos fueron desarrollados utilizando anticuerpos anti FPN y prohepcidina de raton, desarrollados en conejo y un polimero conjugado con anticuerpos secundarios anti conejo desarrollado en cabra (HRP-DAB). Se evaluaron los niveles de Fe plasmatico y tisular. Nuestros resultados mostraron una clara expresion y redistribucion de FPN duodenal hacia la membrana basolateral en ratones tratados con turpentina, con respecto a la expresion perinuclear y leve expresion basolateral observada en raton sano. Macrofagos de la pulpa roja esplenica mostraron co-localizacion de FPN y hemosiderina, comparado con la ausencia de expresion en raton tratado con turpentina. En higado de raton sano, se observo expresion de FPN en celulas de Kupffer, mientras que en raton tratado con turpentina la expresion fue menos evidente. Ademas, observamos un aumento en la expresion de prohepcidina hepatica con una hipoferremia significativa. Nuestros resultados demostraron que la inflamacion aguda indujo una distribucion diferencial de FPN, mostrando una respuesta especifica del tipo celular. En macrofagos, el aumento de prohepcidina hepatica indujo degradacion de FPN, resultando en hipoferremia. En enterocitos, la redistribucion observada de FPN duodenal, refleja una regulacion diferente en este tejido. La respuesta observada de las proteinas estudiadas podria ser parte de un patron ciclico de efectos sistemicos de la inflamacion aguda en tejidos murinos.