Marta Fiedot
Wrocław University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marta Fiedot.
Materials | 2017
Marta Fiedot; Irena Maliszewska; Olga Rac-Rumijowska; Patrycja Suchorska-Woźniak; Agnieszka Lewińska; Helena Teterycz
Surgical meshes were modified with zinc oxide (ZnO) using a chemical bath deposition method (CBD) at 50 °C, 70 °C, or 90 °C, in order to biologically activate them. Scanning electron microscopy (SEM), mass changes, and X-ray diffraction measurements revealed that at low temperatures Zn(OH)2 was formed, and that this was converted into ZnO with a temperature increase. The antimicrobial activity without light stimulation of the ZnO modified Mersilene™ meshes was related to the species of microorganism, the incubation time, and the conditions of the experiment. Generally, cocci (S. aureus, S. epidermidis) and yeast (C. albicans) were more sensitive than Gram-negative rods (E. coli). The differences in sensitivity of the studied microorganisms to ZnO were discussed. The most active sample was that obtained at 90 °C. The mechanism of antimicrobial action of ZnO was determined by various techniques, such as zeta potential analysis, electron paramagnetic resonance (EPR) spectroscopy, SEM studies, and measurements of Zn(II) and reactive oxygen species (ROS) concentration. Our results confirmed that the generation of free radicals was crucial, which occurs on the surface of crystalline ZnO.
Textile Research Journal | 2015
Marta Fiedot; Iwona Karbownik; Irena Maliszewska; Olga Rac; Patrycja Suchorska-Woźniak; Helena Teterycz
In this article, a new method of modification of polypropylene fabric surface is presented, in order to obtain a material with antibacterial properties. The surface of the fabric is modified by direct deposition of the hexagonal zinc oxide rods onto the surface. For this reason, the influence of temperature on the size and morphology of microstructures of ZnO was investigated. Deposition was carried out at two temperatures, 75 and 90℃. The surface of the fabrics was treated with oxygen plasma. The influence of oxygen plasma on the parameters of rods was examined. The microstructure and crystalline structure of ZnO rods were investigated by scanning electron microscopy and X-ray diffraction. In addition, the impact of morphology and size of obtained ZnO structures on the biological activity of modified materials was determined. The tests revealed that the modified fabric shows very good antibacterial activity.
Sensors | 2014
Patrycja Suchorska-Woźniak; Olga Rac; Marta Fiedot; Helena Teterycz
The main objective of the paper was the analysis of the properties of SnO2|WO3 heterocontact as well as the determination of its response to 50 ppm of hydrogen sulphide. It was noticed that the sensitivity of the sensor being tested to hydrogen sulphide depended significantly on the polarization direction. When its parameters were compared with those of sensors the gas-sensitive layer of which was made only from one type of metal oxide, a high impact of the heterocontact on the electric charge transport was noticed. The value of the activation energy of the electric conductivity is clearly dependent on the polarization direction. A mechanism of physicochemical processes occurring in a planar sensor with a heterocontact was suggested, and three areas differing in the width of depleted layer, where the inter-phase boundary of SnO2|WO3 had the most essential impact on the parameters of the sensor being tested, were distinguished and described.
Materials | 2016
Izabela Polowczyk; Anna Bastrzyk; Marta Fiedot
Calcium carbonate is an important component in exoskeletons of many organisms. The synthesis of calcium carbonate was performed by mixing dimethyl carbonate and an aqueous solution of calcium chloride dihydrate. The precipitation product was characterized by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) measurements. In addition, the turbidity of the reaction solution was acquired to monitor the kinetics of the calcium carbonate structure’s growth in the investigated system. In this study, samples of CaCO3 particles obtained with individual proteins, such as ovalbumin, lysozyme, and a mixture of the proteins, were characterized and compared with a control sample, i.e., synthesized without proteins. The obtained data indicated that the addition of ovalbumin to the reaction changed the morphology of crystals from rhombohedral to ‘stack-like’ structures. Lysozyme, however, did not affect the morphology of calcium carbonate, yet the presence of the protein mixture led to the creation of more complex composites in which the calcium carbonate crystals were constructed in protein matrices formed by the ovalbumin-lysozyme interaction. It was also observed that in the protein mixture, ovalbumin has a major influence on the CaCO3 formation through a strong interaction with calcium ions, which leads to the coalescence and creation of a steric barrier reducing particle growth. The authors proposed a mechanism of calcium carbonate grain growth in the presence of both proteins, taking into account the interaction of calcium ions with the protein.
Beilstein Journal of Nanotechnology | 2014
Olga Rac; Patrycja Suchorska-Woźniak; Marta Fiedot; Helena Teterycz
Summary According to recent research, the use of nanoparticles as a gas-sensitive material increases the selectivity and sensitivity and shortens the response time of a sensor. However, the synthesis of SnO2 nanoparticles presents many difficulties. The following article presents a simple and inexpensive method for the synthesis of SnO2 nanoparticles. The influence of the surfactant and polymer choice on the size of the resulting nanoparticles was investigated and a mechanism describing their interaction was proposed. It was found that stable colloids of SnO2 nanoparticles are formed in the presence of both PEI and Triton X-100 surfactants as stabilising agents. However, an additional factor essential for good stabilisation of the nanoparticles was an appropriate acidity level of the solution. Under optimal conditions, nanoparticles having an average diameter of about 10 nm are reproducibly formed.
14th International Conference on Optical and Electronic Sensors | 2016
Marta Fiedot; Patrycja Suchorska-Woźniak; Olga Rac; W. Nawrot; Helena Teterycz
In presented studies resistive chlorine gas sensor with gas sensitive layer in the form of zinc oxide microrods doped with platinum was developed. The growth of active layer was carried out in water solution containing zinc nitrate (V), hexamethylenetetramine and chloroplatinic acid using the chemical bath deposition method. The structure and morphology of obtained sensors was characterized by scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDX). To determine the chlorine gas sensing properties Temperature-Stimulated Conductance method (TSC) was used. During the measurements sensor was tested in a reference atmosphere and an atmosphere with 2, 5 or 8 ppm of chlorine. Obtained results have shown that zinc oxide microrods doped with platinum were obtained. TSC measurements showed that developed sensor allows to detect chlorine with very good sensitivity.
Sensors | 2016
Patrycja Suchorska-Woźniak; Olga Rac; Marta Fiedot; Helena Teterycz
The article presents the results of the detection of low-concentration C1–C4 alcohols using a planar sensor, in which a sepiolite filter was applied next to the gas-sensitive layer based on tin dioxide. The sepiolite layer is composed of tubes that have a length of several microns, and the diameter of the single tube ranges from several to tens of nanometers. The sepiolite layer itself demonstrated no chemical activity in the presence of volatile organic compounds (VOC), and the passive filter made of this material did not modify the chemical composition of the gaseous atmosphere diffusing to the gas-sensitive layer. The test results revealed that the structural remodelling of the sepiolite that occurs under the influence of temperature, as well as the effect of the filter (a compound with ionic bonds) with molecules of water, has a significant impact on the improvement of the sensitivity of the sensor in relation to volatile organic compounds when compared to the sensor without a filter.
international students and young scientists workshop photonics and microsystems | 2010
Marta Fiedot; Helena Teterycz; Patryk Halek; Miroslaw Malewicz
In this paper we presented influence of acidity on nanopowder structure prepared in reaction of precipitation. Zinc oxide was prepared from zinc nitrate and sodium hydroxide with the participation of the microwave field. The investigation revealed that the grain size of zinc oxide and their microstructure significantly depends on the solution pH. The microstructures obtained in the more alkaline reaction conditions have greater the aspect ratio.
Polymer | 2015
Iwona Karbownik; Marta Fiedot; Olga Rac; Patrycja Suchorska-Woźniak; Tomasz Rybicki; Helena Teterycz
European Polymer Journal | 2015
Iwona Karbownik; Olga Rac; Marta Fiedot; Patrycja Suchorska-Woźniak; Helena Teterycz