Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marta Grodzik is active.

Publication


Featured researches published by Marta Grodzik.


International Journal of Nanomedicine | 2010

Visualization of interaction between inorganic nanoparticles and bacteria or fungi

A. Chwalibog; E. Sawosz; Anna Hotowy; Jacek Szeliga; Stanislaw Mitura; Katarzyna Mitura; Marta Grodzik; Piotr Orlowski; A. Sokołowska

Purpose The objective of the present investigation was to evaluate the morphologic characteristics of self-assemblies of diamond (nano-D), silver (nano-Ag), gold (nano-Au), and platinum (nano-Pt) nanoparticles with Staphylococcus aureus (bacteria) and Candida albicans (fungi), to determine the possibility of constructing microorganism–nanoparticle vehicles. Methods Hydrocolloids of individual nanoparticles were added to suspensions of S. aureus and C. albicans. Immediately after mixing, the samples were inspected by transmission electron microscopy. Results Visualization of the morphologic interaction between the nanoparticles and microorganisms showed that nano-D, which are dielectrics and exhibit a positive zeta potential, were very different from the membrane potentials of microorganisms, and uniformly surrounded the microorganisms, without causing visible damage and destruction of cells. All metal nanoparticles with negative zeta potential had cell damaging properties. Nano-Ag showed the properties of self-organization with the cells, disintegrating the cell walls and cytoplasmic membranes, and releasing a substance (probably cytoplasm) outside the cell. Arrangement of nano-Au with microorganisms did not create a system of self-organization, but instead a “noncontact” interaction between the nanoparticles and microorganisms was observed to cause damage to fungal cells. Nano-Pt caused both microorganisms to release a substance outside the cell and disintegrated the cytoplasmic membrane and cell wall. Conclusion Nano-Ag, nano-Au, and nano-Pt (all metal nanoparticles) are harmful to bacteria and fungi. In contrast, nano-D bind closely to the surface of microorganisms without causing visible damage to cells, and demonstrating good self-assembling ability. The results indicate that both microorganisms could be used as potential carriers for nano-D.


International Journal of Nanomedicine | 2013

In vitro evaluation of the effects of graphene platelets on glioblastoma multiforme cells.

Sławomir Jaworski; Ewa Sawosz; Marta Grodzik; Anna Winnicka; Marta Prasek; Mateusz Wierzbicki; A. Chwalibog

Graphene is a single atom-thick material with exciting potential. It can be used in many fields, from electronics to biomedicine. However, little is known about its toxicity and biocompatibility. Herein, we report a study on the toxicity of graphene platelets (GPs) by examining the influence of GPs on the morphology, mortality, viability, membrane integrity, and type of cell death of U87 and U118 glioma cells. It was found that graphene is toxic to glioma cells, but it activated apoptosis only in the U118 cell line, without inducing necrosis, indicating the potential applicability of GP in anticancer therapy.


Archives of Animal Nutrition | 2007

Influence of hydrocolloidal silver nanoparticles on gastrointestinal microflora and morphology of enterocytes of quails

Ewa Sawosz; Marian Binek; Marta Grodzik; Marlena Zielinska; Paweł Sysa; Maciej Szmidt; Tomasz Niemiec; A. Chwalibog

Abstract The objective of the present study was to examine the effects of hydrocolloidal silver nanoparticles (Ag-nano) on microbial profile of caecum and morphology of enterocytes in duodenum of Japanese quail, as a model animal for poultry. Quails (Coturnix coturnix japonica) (10 d old) were randomly divided into four groups (15 quails each) and located into four cages for 12 days. Quails were fed with granulated diets given ad libitum and had free access to drinking water. Ag-nano were added to drinking water at concentrations of 0, 5, 15 and 25 mg/kg. At the end of the experiment, the animals were killed and samples of duodenum and caeca microflora were collected. This initial investigation demonstrated that silver nanoparticles did not influence emphatically microflora of quail caecum; however, water containing 25 mg/kg of Ag-nano significantly increased the population of lactic acid bacteria. Furthermore, Ag-nano did not show any damaging properties on enterocytes of duodenal villi.


International Journal of Nanomedicine | 2010

Visualization of gold and platinum nanoparticles interacting with Salmonella Enteritidis and Listeria monocytogenes

Ewa Sawosz; A. Chwalibog; Jacek Szeliga; Filip Sawosz; Marta Grodzik; Marlena Rupiewicz; Tomasz Niemiec; Katarzyna Kacprzyk

Purpose Rapid development of nanotechnology has recently brought significant attention to the extraordinary biological features of nanomaterials. The objective of the present investigation was to evaluate morphological characteristics of the assembles of gold and platinum nanoparticles (nano-Au and nano-Pt respectively), with Salmonella Enteritidis (Gram-negative) and Listeria monocytogenes (Gram-positive), to reveal possibilities of constructing bacteria-nanoparticle vehicles. Methods Hydrocolloids of nano-Au or nano-Pt were added to two bacteria suspensions in the following order: nano-Au + Salmonella Enteritidis; nano-Au + Listeria monocytogenes; nano-Pt + Salmonella Enteritidis; nano-Pt + Listeria monocytogenes. Samples were inspected by transmission electron microscope. Results Visualization of morphological interaction between nano-Au and Salmonella Enteritidis and Listeria monocytogenes, showed that nano-Au were aggregated within flagella or biofilm network and did not penetrate the bacterial cell. The analysis of morphological effects of interaction of nano-Pt with bacteria revealed that nano-Pt entered cells of Listeria monocytogenes and were removed from the cells. In the case of Salmonella Enteritidis, nano-Pt were seen inside bacteria cells, probably bound to DNA and partly left bacterial cells. After washing and centrifugation, some of the nano-Pt-DNA complexes were observed within Salmonella Enteritidis. Conclusion The results indicate that the bacteria could be used as a vehicle to deliver nano-Pt to specific points in the body.


International Journal of Nanomedicine | 2015

In vitro and in vivo effects of graphene oxide and reduced graphene oxide on glioblastoma

Sławomir Jaworski; Ewa Sawosz; Marta Kutwin; Mateusz Wierzbicki; Mateusz Hinzmann; Marta Grodzik; Anna Winnicka; Ludwika Lipińska; Karolina Włodyga; A. Chwalibog

Graphene and its related counterparts are considered the future of advanced nanomaterials owing to their exemplary properties. However, information about their toxicity and biocompatibility is limited. The objective of this study is to evaluate the toxicity of graphene oxide (GO) and reduced graphene oxide (rGO) platelets, using U87 and U118 glioma cell lines for an in vitro model and U87 tumors cultured on chicken embryo chorioallantoic membrane for an in vivo model. The in vitro investigation consisted of structural analysis of GO and rGO platelets using transmission elec tron microscopy, evaluation of cell morphology and ultrastructure, assessment of cell viability by XTT assay, and investigation of cell proliferation by BrdU assay. Toxicity in U87 glioma tumors was evaluated by calculation of weight and volume of tumors and analyses of ultrastructure, histology, and protein expression. The in vitro results indicate that GO and rGO enter glioma cells and have different cytotoxicity. Both types of platelets reduced cell viability and proliferation with increasing doses, but rGO was more toxic than GO. The mass and volume of tumors were reduced in vivo after injection of GO and rGO. Moreover, the level of apoptotic markers increased in rGO-treated tumors. We show that rGO induces cell death mostly through apoptosis, indicating the potential applicability of graphene in cancer therapy.


International Journal of Nanomedicine | 2011

Nanoparticles of carbon allotropes inhibit glioblastoma multiforme angiogenesis in ovo

Marta Grodzik; Ewa Sawosz; Mateusz Wierzbicki; Piotr Orlowski; Anna Hotowy; Tomasz Niemiec; Maciej Szmidt; Katarzyna Mitura; A. Chwalibog

The objective of the study was to determine the effect of carbon nanoparticles produced by different methods on the growth of brain tumor and the development of blood vessels. Glioblastoma multiforme cells were cultured on the chorioallantoic membrane of chicken embryo and after 7 days of incubation, were treated with carbon nanoparticles administered in ovo to the tumor. Both types of nanoparticles significantly decreased tumor mass and volume, and vessel area. Quantitative real-time polymerase chain reaction analysis showed downregulated fibroblast growth factor-2 and vascular endothelial growth factor expression at the messenger ribonucleic acid level. The present results demonstrate antiangiogenic activity of carbon nanoparticles, making them potential factors for anticancer therapy.


International Journal of Nanomedicine | 2014

Toxicity of pristine graphene in experiments in a chicken embryo model

Ewa Sawosz; Sławomir Jaworski; Marta Kutwin; Anna Hotowy; Mateusz Wierzbicki; Marta Grodzik; Natalia Kurantowicz; Barbara Strojny; Ludwika Lipińska; A. Chwalibog

Evaluation of the potential cytotoxicity of graphene is a key factor for medical applications, where flakes or a surface of graphene may be used as bioactive molecules, drug carriers, or biosensors. In the present work, effects of pristine graphene (pG) on the development of a living organism, with an emphasis on morphological and molecular states of the brain, were investigated using a chicken embryo model. Fertilized chicken eggs were divided into the control group and groups administered with pG suspended in milli-Q water at concentrations of 50 μg/L, 100 μg/L, 500 μg/L, 1,000 μg/L, 5,000 μg/L, and 10,000 μg/L (n=30 per group). The experimental solutions were injected in ovo into the albumin and then the eggs were incubated. After 19 days of incubation, the survival, weight of the body and organs, and blood serum biochemical indices were measured. The brain samples were collected for microscopic examination of brain ultrastructure and measurements of gene and protein expression. Survival of embryos was significantly decreased after treatment with pG, but the body and organ weights as well as biochemical indices were not affected. In all treatment groups, some atypical ultrastructures of the brain were observed, but they were not enhanced by the increasing concentrations of pG. Expression of proliferating cell nuclear antigen at the messenger ribonucleic acid level was downregulated, and the number of proliferating cell nuclear antigen-positive nuclei was significantly reduced in the 500–10,000 μg/L groups compared with the control group, indicating a decreased rate of deoxyribonucleic acid synthesis in the brain. The present results demonstrate some harmful effects of the applied pG flakes on the developing organism, including brain tissue, which ought to be considered prior to any medical applications.


Nanoscale Research Letters | 2013

Comparison of anti-angiogenic properties of pristine carbon nanoparticles

Mateusz Wierzbicki; Ewa Sawosz; Marta Grodzik; Marta Prasek; Sławomir Jaworski; A. Chwalibog

Angiogenesis is vital for tumour formation, development and metastasis. Recent reports show that carbon nanomaterials inhibit various angiogenic signalling pathways and, therefore, can be potentially used in anti-angiogenic therapy. In the present study, we compared the effect of different carbon nanomaterials on blood vessel development. Diamond nanoparticles, graphite nanoparticles, graphene nanosheets, multi-wall nanotubes and C60 fullerenes were evaluated for their angiogenic activities using the in ovo chick embryo chorioallantoic membrane model. Diamond nanoparticles and multi-wall nanotubes showed the greatest anti-angiogenic properties. Interestingly, fullerene exhibited the opposite effect, increasing blood vessel development, while graphite nanoparticles and graphene had no effect. Subsequently, protein levels of pro-angiogenic growth factor receptors were analysed, showing that diamond nanoparticles decreased the expression of vascular endothelial growth factor receptor. These results provide new insights into the biological activity of carbon nanomaterials and emphasise the potential use of multi-wall nanotubes and diamond nanoparticles in anti-angiogenic tumour therapy.


Nanoscale Research Letters | 2013

Influence of nanoparticles of platinum on chicken embryo development and brain morphology

Marta Prasek; Ewa Sawosz; Sławomir Jaworski; Marta Grodzik; Teresa Ostaszewska; Maciej Kamaszewski; Mateusz Wierzbicki; A. Chwalibog

Platinum nanoparticles (NP-Pt) are noble metal nanoparticles with unique physiochemical properties that have recently elicited much interest in medical research. However, we still know little about their toxicity and influence on general health. We investigated effects of NP-Pt on the growth and development of the chicken embryo model with emphasis on brain tissue micro- and ultrastructure. The embryos were administered solutions of NP-Pt injected in ovo at concentrations from 1 to 20 μg/ml. The results demonstrate that NP-Pt did not affect the growth and development of the embryos; however, they induced apoptosis and decreased the number of proliferating cells in the brain tissue. These preliminary results indicate that properties of NP-Pt might be utilized in brain cancer therapy, but potential toxic side effects must be elucidated in extensive follow-up research.


International Journal of Nanomedicine | 2014

Nanoparticles containing allotropes of carbon have genotoxic effects on glioblastoma multiforme cells

Mateusz Hinzmann; Sławomir Jaworski; Marta Kutwin; Joanna Jagiello; Rafal Kozinski; Mateusz Wierzbicki; Marta Grodzik; Ludwika Lipińska; Ewa Sawosz; A. Chwalibog

The carbon-based nanomaterial family consists of nanoparticles containing allotropes of carbon, which may have a number of interactions with biological systems. The objective of this study was to evaluate the toxicity of nanoparticles comprised of pristine graphene, reduced graphene oxide, graphene oxide, graphite, and ultradispersed detonation diamond in a U87 cell line. The scope of the work consisted of structural analysis of the nanoparticles using transmission electron microscopy, evaluation of cell morphology, and assessment of cell viability by Trypan blue assay and level of DNA fragmentation of U87 cells after 24 hours of incubation with 50 μg/mL carbon nanoparticles. DNA fragmentation was studied using single-cell gel electrophoresis. Incubation with nanoparticles containing the allotropes of carbon did not alter the morphology of the U87 cancer cells. However, incubation with pristine graphene and reduced graphene oxide led to a significant decrease in cell viability, whereas incubation with graphene oxide, graphite, and ultradispersed detonation diamond led to a smaller decrease in cell viability. The results of a comet assay demonstrated that pristine graphene, reduced graphene oxide, graphite, and ultradispersed detonation diamond caused DNA damage and were therefore genotoxic in U87 cells, whereas graphene oxide was not.

Collaboration


Dive into the Marta Grodzik's collaboration.

Top Co-Authors

Avatar

A. Chwalibog

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Ewa Sawosz

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Mateusz Wierzbicki

Warsaw University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Sławomir Jaworski

Warsaw University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Tomasz Niemiec

Warsaw University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Marta Kutwin

Warsaw University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Anna Hotowy

Warsaw University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Barbara Strojny

Warsaw University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Maciej Szmidt

Warsaw University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

E. Sawosz

Warsaw University of Life Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge