Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marta Guzman is active.

Publication


Featured researches published by Marta Guzman.


Cancer Research | 2008

NVP-BEZ235, a Dual PI3K/mTOR Inhibitor, Prevents PI3K Signaling and Inhibits the Growth of Cancer Cells with Activating PI3K Mutations

Violeta Serra; Benjamin Markman; Maurizio Scaltriti; Pieter J.A. Eichhorn; Vanesa Valero; Marta Guzman; Maria Luisa Botero; Elisabeth Llonch; Francesco Atzori; Serena Di Cosimo; Michel Maira; Carlos Garcia-Echeverria; Josep Lluis Parra; J. Arribas; José Baselga

Phosphatidylinositol-3-kinase (PI3K) pathway deregulation is a common event in human cancer, either through inactivation of the tumor suppressor phosphatase and tensin homologue deleted from chromosome 10 or activating mutations of p110-alpha. These hotspot mutations result in oncogenic activity of the enzyme and contribute to therapeutic resistance to the anti-HER2 antibody trastuzumab. The PI3K pathway is, therefore, an attractive target for cancer therapy. We have studied NVP-BEZ235, a dual inhibitor of the PI3K and the downstream mammalian target of rapamycin (mTOR). NVP-BEZ235 inhibited the activation of the downstream effectors Akt, S6 ribosomal protein, and 4EBP1 in breast cancer cells. The antiproliferative activity of NVP-BEZ235 was superior to the allosteric selective mTOR complex inhibitor everolimus in a panel of 21 cancer cell lines of different origin and mutation status. The described Akt activation due to mTOR inhibition was prevented by higher doses of NVP-BEZ235. NVP-BEZ235 reversed the hyperactivation of the PI3K/mTOR pathway caused by the oncogenic mutations of p110-alpha, E545K, and H1047R, and inhibited the proliferation of HER2-amplified BT474 cells exogenously expressing these mutations that render them resistant to trastuzumab. In trastuzumab-resistant BT474 H1047R breast cancer xenografts, NVP-BEZ235 inhibited PI3K signaling and had potent antitumor activity. In treated animals, there was complete inhibition of PI3K signaling in the skin at pharmacologically active doses, suggesting that skin may serve as surrogate tissue for pharmacodynamic studies. In summary, NVP-BEZ235 inhibits the PI3K/mTOR axis and results in antiproliferative and antitumoral activity in cancer cells with both wild-type and mutated p110-alpha.


Cancer Research | 2008

Phosphatidylinositol 3-Kinase Hyperactivation Results in Lapatinib Resistance that Is Reversed by the mTOR/Phosphatidylinositol 3-Kinase Inhibitor NVP-BEZ235

Pieter J.A. Eichhorn; Magüi Gili; Maurizio Scaltriti; Violeta Serra; Marta Guzman; Wouter Nijkamp; Roderick L. Beijersbergen; Vanesa Valero; Joan Seoane; René Bernards; José Baselga

Small molecule inhibitors of HER2 are clinically active in women with advanced HER2-positive breast cancer who have progressed on trastuzumab treatment. However, the effectiveness of this class of agents is limited by either primary resistance or acquired resistance. Using an unbiased genetic approach, we performed a genome wide loss-of-function short hairpin RNA screen to identify novel modulators of resistance to lapatinib, a recently approved anti-HER2 tyrosine kinase inhibitor. Here, we have identified the tumor suppressor PTEN as a modulator of lapatinib sensitivity in vitro and in vivo. In addition, we show that two dominant activating mutations in PIK3CA (E545K and H1047R), which are prevalent in breast cancer, also confer resistance to lapatinib. Furthermore, we show that phosphatidylinositol 3-kinase (PI3K)-induced lapatinib resistance can be abrogated through the use of NVP-BEZ235, a dual inhibitor of PI3K/mTOR. Our data show that deregulation of the PI3K pathway, either through loss-of-function mutations in PTEN or dominant activating mutations in PIK3CA, leads to lapatinib resistance, which can be effectively reversed by NVP-BEZ235.


Oncogene | 2011

PI3K inhibition results in enhanced HER signaling and acquired ERK dependency in HER2-overexpressing breast cancer.

Violeta Serra; Maurizio Scaltriti; Ludmila Prudkin; Pieter J.A. Eichhorn; Yasir H. Ibrahim; Sarat Chandarlapaty; Benjamin Markman; Olga Rodríguez; Marta Guzman; Sonia Rodríguez; Magüi Gili; M Russillo; Josep-Lluís Parra; S Singh; J. Arribas; Neal Rosen; J. Baselga

There is a strong rationale to therapeutically target the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway in breast cancer since it is highly deregulated in this disease and it also mediates resistance to anti-HER2 therapies. However, initial studies with rapalogs, allosteric inhibitors of mTORC1, have resulted in limited clinical efficacy probably due to the release of a negative regulatory feedback loop that triggers AKT and ERK signaling. Since activation of AKT occurs via PI3K, we decided to explore whether PI3K inhibitors prevent the activation of these compensatory pathways. Using HER2-overexpressing breast cancer cells as a model, we observed that PI3K inhibitors abolished AKT activation. However, PI3K inhibition resulted in a compensatory activation of the ERK signaling pathway. This enhanced ERK signaling occurred as a result of activation of HER family receptors as evidenced by induction of HER receptors dimerization and phosphorylation, increased expression of HER3 and binding of adaptor molecules to HER2 and HER3. The activation of ERK was prevented with either MEK inhibitors or anti-HER2 monoclonal antibodies and tyrosine kinase inhibitors. Combined administration of PI3K inhibitors with either HER2 or MEK inhibitors resulted in decreased proliferation, enhanced cell death and superior anti-tumor activity compared with single agent PI3K inhibitors. Our findings indicate that PI3K inhibition in HER2-overexpressing breast cancer activates a new compensatory pathway that results in ERK dependency. Combined anti-MEK or anti-HER2 therapy with PI3K inhibitors may be required in order to achieve optimal efficacy in HER2-overexpressing breast cancer. This approach warrants clinical evaluation.


Clinical Cancer Research | 2004

Combined Epidermal Growth Factor Receptor Targeting with the Tyrosine Kinase Inhibitor Gefitinib (ZD1839) and the Monoclonal Antibody Cetuximab (IMC-C225) Superiority Over Single-Agent Receptor Targeting

Pablo Matar; Federico Rojo; Raúl Cassia; Gema Moreno-Bueno; Serena Di Cosimo; Jose Tabernero; Marta Guzman; Sonia Rodríguez; Joaquín Arribas; José Palacios; José Baselga

Purpose: The epidermal growth factor receptor (EGFR) is abnormally activated in cancer and two classes of anti-EGFR agents, monoclonal antibodies and low-molecular-weight tyrosine kinase inhibitors, have shown antitumor activity in patients. Because these two classes of antireceptor agents target the EGFR at different sites, we decided to explore whether the combined administration of gefitinib, a tyrosine kinase inhibitor, and cetuximab, a monoclonal antibody, had superior antitumor activity than either agent given alone. Experimental Design: We studied the effects of the combination of gefitinib and cetuximab in a panel of human cancer cell lines and in an EGFR-dependent human tumor xenograft model (A431). The effects of these two agents on EGFR signaling, proliferation, apoptosis, and vascularization were evaluated. In addition, we analyzed, with cDNA arrays, changes in gene expression profiles induced by both agents. Results: The combined treatment with gefitinib and cetuximab resulted in a synergistic effect on cell proliferation and in superior inhibition of EGFR-dependent signaling and induction of apoptosis. In a series of in vivo experiments, single-agent gefitinib or cetuximab resulted in transient complete tumor remission only at the highest doses. In contrast, suboptimal doses of gefitinib and cetuximab given together resulted in a complete and permanent regression of large tumors. In the combination-treated tumors, there was a superior inhibition of EGFR, mitogen-activated protein kinase, and Akt phosphorylation, as well as greater inhibition of cell proliferation and vascularization and enhanced apoptosis. Using cDNA arrays, we found 59 genes that were coregulated and 45 genes differentially regulated, including genes related to cell proliferation and differentiation, transcription, DNA synthesis and repair, angiogenesis, signaling molecules, cytoskeleton organization, and tumor invasion and metastasis. Conclusions: Our findings suggest both shared and complementary mechanisms of action with gefitinib and cetuximab and support combined EGFR targeting as a clinically exploitable strategy.


Cancer Discovery | 2012

PI3K Inhibition Impairs BRCA1/2 Expression and Sensitizes BRCA-Proficient Triple-Negative Breast Cancer to PARP Inhibition

Yasir H. Ibrahim; Celina Garcia-Garcia; Violeta Serra; Lei He; Kristine Torres-Lockhart; Aleix Prat; Pilar Antón; Patricia Cozar; Marta Guzman; Judit Grueso; Olga Rodríguez; Maria Teresa Calvo; Claudia Aura; Orland Diez; Isabel T. Rubio; J. F. Pérez; Jordi Rodon; Javier Cortes; Leif W. Ellisen; Maurizio Scaltriti; José Baselga

UNLABELLED PARP inhibitors are active in tumors with defects in DNA homologous recombination (HR) due to BRCA1/2 mutations. The phosphoinositide 3-kinase (PI3K) signaling pathway preserves HR steady state. We hypothesized that in BRCA-proficient triple-negative breast cancer (TNBC), PI3K inhibition would result in HR impairment and subsequent sensitization to PARP inhibitors. We show in TNBC cells that PI3K inhibition leads to DNA damage, downregulation of BRCA1/2, gain in poly-ADP-ribosylation, and subsequent sensitization to PARP inhibition. In TNBC patient-derived primary tumor xenografts, dual PI3K and PARP inhibition with BKM120 and olaparib reduced the growth of tumors displaying BRCA1/2 downregulation following PI3K inhibition. PI3K-mediated BRCA downregulation was accompanied by extracellular signal-regulated kinase (ERK) phosphorylation. Overexpression of an active form of MEK1 resulted in ERK activation and downregulation of BRCA1, whereas the MEK inhibitor AZD6244 increased BRCA1/2 expression and reversed the effects of MEK1. We subsequently identified that the ETS1 transcription factor was involved in the ERK-dependent BRCA1/2 downregulation and that knockdown of ETS1 led to increased BRCA1/2 expression, limiting the sensitivity to combined BKM120 and olaparib in 3-dimensional culture. SIGNIFICANCE Treatment options are limited for patients with TNBCs. PARP inhibitors have clinical activity restricted to a small subgroup of patients with BRCA mutations. Here, we show that PI3K blockade results in HR impairment and sensitization to PARP inhibition in TNBCs without BRCA mutations, providing a rationale to combine PI3K and PARP inhibitors in this indication. Our findings could greatly expand the number of patients with breast cancer that would benefit from therapy with PARP inhibitors. On the basis of our findings, a clinical trial with BKM120 and olaparib is being initiated in patients with TNBCs.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Cyclin E amplification/overexpression is a mechanism of trastuzumab resistance in HER2+ breast cancer patients.

Maurizio Scaltriti; Pieter J.A. Eichhorn; Javier Cortes; Ludmila Prudkin; Claudia Aura; Jose L. Jimenez; Sarat Chandarlapaty; Violeta Serra; Aleix Prat; Yasir H. Ibrahim; Marta Guzman; Magüi Gili; Olga Rodríguez; Sonia Rodríguez; J. F. Pérez; Simon Green; Sabine Mai; Neal Rosen; Clifford A. Hudis; José Baselga

Clinical benefits from trastuzumab and other anti-HER2 therapies in patients with HER2 amplified breast cancer remain limited by primary or acquired resistance. To identify potential mechanisms of resistance, we established trastuzumab-resistant HER2 amplified breast cancer cells by chronic exposure to trastuzumab treatment. Genomewide copy-number variation analyses of the resistant cells compared with parental cells revealed a focal amplification of genomic DNA containing the cyclin E gene. In a cohort of 34 HER2+ patients treated with trastuzumab-based therapy, we found that cyclin E amplification/overexpression was associated with a worse clinical benefit (33.3% compared with 87.5%, P < 0.02) and a lower progression-free survival (6 mo vs. 14 mo, P < 0.002) compared with nonoverexpressing cyclin E tumors. To dissect the potential role of cyclin E in trastuzumab resistance, we studied the effects of cyclin E overexpression and cyclin E suppression. Cyclin E overexpression resulted in resistance to trastuzumab both in vitro and in vivo. Inhibition of cyclin E activity in cyclin E-amplified trastuzumab resistant clones, either by knockdown of cyclin E expression or treatment with cyclin-dependent kinase 2 (CDK2) inhibitors, led to a dramatic decrease in proliferation and enhanced apoptosis. In vivo, CDK2 inhibition significantly reduced tumor growth of trastuzumab-resistant xenografts. Our findings point to a causative role for cyclin E overexpression and the consequent increase in CDK2 activity in trastuzumab resistance and suggest that treatment with CDK2 inhibitors may be a valid strategy in patients with breast tumors with HER2 and cyclin E coamplification/overexpression.


Clinical Cancer Research | 2007

4E-Binding Protein 1, A Cell Signaling Hallmark in Breast Cancer that Correlates with Pathologic Grade and Prognosis

Federico Rojo; Laura Najera; José Luís Lirola; Jose L. Jimenez; Marta Guzman; M. Dolors Sabadell; José Baselga; Santiago Ramón y Cajal

Purpose: Cell signaling pathways include a complex myriad of interconnected factors from the membrane to the nucleus, such as erbB family receptors and the phosphoinositide-3-kinase/Akt/mTOR and Ras-Raf-ERK cascades, which drive proliferative signals, promote survival, and regulate protein synthesis. Experimental Design: To find pivotal factors in these pathways, which provide prognostic information in malignancies, we studied 103 human breast tumors with an immunohistochemical profile, including total and phosphorylated (p) proteins: human epidermal growth factor receptor 2 (HER2), epidermal growth factor receptor, extracellular signal-regulated kinase 1/2, Akt, 4E-binding protein 1 (4EBP1), eukaryotic initiation factor 4E, phosphorylated ribosomal protein S6 kinase 1, phosphorylated ribosomal protein S6, and Ki67. Western blot and reverse lysate protein arrays were also done in a subset of tumors. Results: Significantly, activation of the phosphoinositide-3-kinase/Akt/mTOR cascade was detected in a high proportion of tumors (41.9%). Tumors with HER2 overexpression showed higher p-Akt as compared with negative tumors (P < 0.001). Levels of p-Akt correlated with the downstream molecules, p-4EBP1 (P = 0.001) and p-p70S6K (P = 0.05). Although 81.5% of tumors expressed p-4EBP1, in 16.3% of these tumors, concomitant activation of the upstream factors was not detected. Interestingly, p-4EBP1 was mainly expressed in poorly differentiated tumors (P < 0.001) and correlated with tumor size (P < 0.001), presence of lymph node metastasis (P = 0.002), and locoregional recurrences (P = 0.002). Coexpression of p-4EBP1 and p-eIF4G correlated with a high tumor proliferation rate (P = 0.012). Conclusion: In this study, p-4EBP1 was the main factor in signaling pathways that associate with prognosis and grade of malignancy in breast tumors. Moreover, p-4EBP1 was detected in both HER2-positive and HER2-negative tumors. This factor seems to be a channeling point at which different upstream oncogenic alterations converge and transmit their proliferative signal, modulating protein translation.


Science Translational Medicine | 2015

PI3K inhibition results in enhanced estrogen receptor function and dependence in hormone receptor–positive breast cancer

Ana Bosch; Zhiqiang Li; Anna Bergamaschi; Haley Ellis; Eneda Toska; Aleix Prat; Jessica J. Tao; Daniel E. Spratt; Nerissa Viola-Villegas; Pau Castel; Gerard Minuesa; Natasha Morse; Jordi Rodon; Yasir H. Ibrahim; Javier Cortes; Jose Perez-Garcia; Patricia Galván; Judit Grueso; Marta Guzman; John A. Katzenellenbogen; Michaelz Kharas; Jason S. Lewis; Maura N. Dickler; Violeta Serra; Neal Rosen; Sarat Chandarlapaty; Maurizio Scaltriti; J. Baselga

Inhibition of the PI3K/AKT pathway results in induction of ER-dependent transcriptional activity and susceptibility to anti-estrogen therapy in ER-positive breast cancer. PIKing the correct therapeutic combination Mutations in a gene called PIK3CA are very common in estrogen receptor–positive breast cancers, and drugs that inhibit PI3K, the protein product of this gene, are already in clinical development. Unfortunately, these drugs are not always effective, and this study by Bosch et al. demonstrates a reason for this problem and a practical way to overcome it. By studying both mouse models and human patients’ tumors, the authors discovered that inhibition of PI3K often stimulates the activity of the estrogen receptor, which then drives tumor growth. By combining PI3K inhibitors with clinically available drugs that inhibit the estrogen receptor, the authors were able to overcome treatment resistance and effectively induce tumor regression in mouse models. Activating mutations of PIK3CA are the most frequent genomic alterations in estrogen receptor (ER)–positive breast tumors, and selective phosphatidylinositol 3-kinase α (PI3Kα) inhibitors are in clinical development. The activity of these agents, however, is not homogeneous, and only a fraction of patients bearing PIK3CA-mutant ER-positive tumors benefit from single-agent administration. Searching for mechanisms of resistance, we observed that suppression of PI3K signaling results in induction of ER-dependent transcriptional activity, as demonstrated by changes in expression of genes containing ER-binding sites and increased occupancy by the ER of promoter regions of up-regulated genes. Furthermore, expression of ESR1 mRNA and ER protein were also increased upon PI3K inhibition. These changes in gene expression were confirmed in vivo in xenografts and patient-derived models and in tumors from patients undergoing treatment with the PI3Kα inhibitor BYL719. The observed effects on transcription were enhanced by the addition of estradiol and suppressed by the anti-ER therapies fulvestrant and tamoxifen. Fulvestrant markedly sensitized ER-positive tumors to PI3Kα inhibition, resulting in major tumor regressions in vivo. We propose that increased ER transcriptional activity may be a reactive mechanism that limits the activity of PI3K inhibitors and that combined PI3K and ER inhibition is a rational approach to target these tumors.


Clinical Cancer Research | 2012

Dual mTORC1/2 and HER2 Blockade Results in Antitumor Activity in Preclinical Models of Breast Cancer Resistant to Anti-HER2 Therapy

Celina Garcia-Garcia; Yasir H. Ibrahim; Violeta Serra; Maria Teresa Calvo; Marta Guzman; Judit Grueso; Claudia Aura; J. F. Pérez; Katti Jessen; Yi Liu; Christian Rommel; Josep Tabernero; José Baselga; Maurizio Scaltriti

Purpose: The PI3K/Akt/mTOR pathway is an attractive target in HER2-positive breast cancer that is refractory to anti-HER2 therapy. The hypothesis is that the suppression of this pathway results in sensitization to anti-HER2 agents. However, this combinatorial strategy has not been comprehensively tested in models of trastuzumab and lapatinib resistance. Experimental Design: We analyzed in vitro cell viability and induction of apoptosis in five different cell lines resistant to trastuzumab and lapatinib. Inhibition of HER2/HER3 phosphorylation, PI3K/Akt/mTOR, and extracellular signal-regulated kinase (ERK) signaling pathways was evaluated by Western blotting. Tumor growth inhibition after treatment with lapatinib, INK-128, or the combination of both agents was evaluated in three different animal models: two cell-based xenograft models refractory to both trastuzumab and lapatinib and a xenograft derived from a patient who relapsed on trastuzumab-based therapy. Results: The addition of lapatinib to INK-128 prevented both HER2 and HER3 phosphorylation induced by INK-128, resulting in inhibition of both PI3K/Akt/mTOR and ERK pathways. This dual blockade produced synergistic induction of cell death in five different HER2-positive cell lines resistant to trastuzumab and lapatinib. In vivo, both cell line–based and patient-derived xenografts showed exquisite sensitivity to the antitumor activity of the combination of lapatinib and INK-128, which resulted in durable tumor shrinkage and exhibited no signs of toxicity in these models. Conclusions: The simultaneous blockade of both PI3K/Akt/mTOR and ERK pathways obtained by combining lapatinib with INK-128 acts synergistically in inducing cell death and tumor regression in breast cancer models refractory to anti-HER2 therapy. Clin Cancer Res; 18(9); 2603–12. ©2012 AACR.


Clinical Cancer Research | 2010

Clinical Benefit of Lapatinib-Based Therapy in Patients with Human Epidermal Growth Factor Receptor 2–Positive Breast Tumors Coexpressing the Truncated p95HER2 Receptor

Maurizio Scaltriti; Sarat Chandarlapaty; Ludmila Prudkin; Claudia Aura; José M. Jiménez; Pier Davide Angelini; Gertrudis Sánchez; Marta Guzman; Josep Lluis Parra; Catherine E. Ellis; Robert Gagnon; Maria Koehler; Henry Gomez; Charles E. Geyer; David A Cameron; J. Arribas; Neal Rosen; José Baselga

Purpose: A subgroup of human epidermal growth factor receptor 2 (HER2)–overexpressing breast tumors coexpresses p95HER2, a truncated HER2 receptor that retains a highly functional HER2 kinase domain but lacks the extracellular domain and results in intrinsic trastuzumab resistance. We hypothesized that lapatinib, a HER2 tyrosine kinase inhibitor, would be active in these tumors. We have studied the correlation between p95HER2 expression and response to lapatinib, both in preclinical models and in the clinical setting. Experimental Design: Two different p95HER2 animal models were used for preclinical studies. Expression of p95HER2 was analyzed in HER2-overexpressing breast primary tumors from a first-line lapatinib monotherapy study (EGF20009) and a second-line lapatinib in combination with capecitabine study (EGF100151). p95HER2 expression was correlated with overall response rate (complete + partial response), clinical benefit rate (complete response + partial response + stable disease ≥24 wk), and progression-free survival using logistic regression and Cox proportional hazard models. Results: Lapatinib inhibited tumor growth and the HER2 downstream signaling of p95HER2-expressing tumors. A total of 68 and 156 tumors from studies EGF20009 and EGF100151 were evaluable, respectively, for p95HER2 detection. The percentage of p95HER2-positive patients was 20.5% in the EGF20009 study and 28.5% in the EGF100151 study. In both studies, there was no statistically significant difference in progression-free survival, clinical benefit rate, and overall response rate between p95HER2-positive and p95HER2-negative tumors. Conclusions: Lapatinib as a monotherapy or in combination with capecitabine seems to be equally effective in patients with p95HER2-positive and p95HER2-negative HER2-positive breast tumors. Clin Cancer Res; 16(9); 2688–95. ©2010 AACR.

Collaboration


Dive into the Marta Guzman's collaboration.

Top Co-Authors

Avatar

José Baselga

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Maurizio Scaltriti

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

J. Arribas

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ludmila Prudkin

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Celina Garcia-Garcia

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

J. F. Pérez

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joaquín Arribas

Memorial Sloan Kettering Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge