Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marta Kaszowska is active.

Publication


Featured researches published by Marta Kaszowska.


International Journal of Medical Microbiology | 2016

Both clades of the epidemic KPC-producing Klebsiella pneumoniae clone ST258 share a modified galactan O-antigen type

Valéria Szijártó; Luis M. Guachalla; Katharina Hartl; Cecília Varga; Pallavi Banerjee; Katarina Stojkovic; Marta Kaszowska; Eszter Nagy; Jolanta Lukasiewicz; Gábor Nagy

Klebsiella pneumoniae ST258 is a globally disseminated, extremely drug resistant, nosocomial clone with limited treatment options. We show that the vast majority of ST258 isolates express modified d-galactan-I lipopolysaccharide O-antigen, termed hereinafter as D-galactan-III. The genetic determinant required for galactan-III synthesis was identified as a distinct operon adjacent to the rfb (wb) locus encoding D-galactan-I synthesis. The three genes within the operon encode predicted glycosyltransferases. Testing an isogenic transformant pair revealed that expression of D-galactan-III, in comparison to D-galactan-I, conferred improved survival in the presence of human serum. Eighty-three percent of the more than 200 ST258 draft genome sequences currently available carries the corresponding operon and hence these isolates are predicted to express galactan-III antigens. A D-galactan-III specific monoclonal antibody (mAb) was shown to bind to extracted LPS from a panel of ST258 isolates. The same mAb confirmed accessibility of galactan-III in surface staining of ST258 irrespective of the distinct capsular antigens expressed by both clades described previously. Based on these data, the galactan-III antigen may represent an attractive target for active and passive immunization approaches against K. pneumoniae ST258.


Infection and Immunity | 2005

Epitope of the vaccine-type Bordetella pertussis strain 186 lipooligosaccharide and antiendotoxin activity of antibodies directed against the terminal pentasaccharide-tetanus toxoid conjugate

Tomasz Niedziela; Iwona Letowska; Jolanta Lukasiewicz; Marta Kaszowska; Anna Czarnecka; Lennart Kenne; Czeslaw Lugowski

ABSTRACT Lipooligosaccharides (LOS) isolated from Bordetella pertussis strains 186 and 606 were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and high-resolution magic angle spinning nuclear magnetic resonsnace (NMR). These analyses distinguished between the LOS of strains 186 and 606, suggesting that the structure of LOS in B. pertussis is heterogeneous. The pentasaccharide was selectively cleaved from LOS of B. pertussis strain 186, purified, and covalently linked to a monomer fraction of tetanus toxoid. Injection of rabbits with the neoglycoconjugate emulsified in complete Freunds adjuvant yielded immunoglobulin G antibodies that were reactive with the LOS. These antibodies reacted strongly with B. pertussis LOS possessing the complete dodecasaccharide, as determined by an enzyme-linked immunosorbent assay, immunoblotting, and flow cytometry with intact, live bacterial cells. The binding epitope within the pentasaccharide was investigated by saturation transfer difference (STD) NMR spectroscopy. Protons H-1 and H-4 of the terminal α-d-GlcpNAc and proton H-6 and protons of an N-methyl group at H-4 of 3-substituted β-l-FucpNAc4NMe exhibited the largest saturation transfers. STD NMR experiments confirmed that the immunodominant epitope recognized by the antineoglycoconjugate antibodies is located predominantly in the distal trisaccharide of B. pertussis 186 LOS. The antipentasaccharide antibodies induced by the conjugate inhibited the secretion of tumor necrosis factor alpha, interleukin-6, and NO by LOS-stimulated J774A.1 cells.


Carbohydrate Research | 2013

The novel structure of the core oligosaccharide backbone of the lipopolysaccharide from the Plesiomonas shigelloides strain CNCTC 80/89 (serotype O13)

Marta Kaszowska; Wojciech Jachymek; Tomasz Niedziela; Sabina Koj; Lennart Kenne; Czeslaw Lugowski

The new structure of the core oligosaccharide of Plesiomonas shigelloides CNCTC 80/89 (serotype O13) lipopolysaccharide has been investigated by chemical methods, (1)H and (13)C NMR spectroscopy and matrix-assisted laser-desorption/ionization time of flight (MALDI-TOF). It was concluded that the core oligosaccharide of P. shigelloides CNCTC 80/89 is a nonasaccharide with the following structure: The position of glycine was determined by MALDI-TOF MS/MS analyses.


Marine Drugs | 2013

Core Oligosaccharide of Plesiomonas shigelloides PCM 2231 (Serotype O17) Lipopolysaccharide — Structural and Serological Analysis

Anna Maciejewska; Jolanta Lukasiewicz; Marta Kaszowska; Aleksandra Man-Kupisinska; Wojciech Jachymek; Czeslaw Lugowski

The herein presented complete structure of the core oligosaccharide of lipopolysaccharide (LPS) P. shigelloides Polish Collection of Microorganisms (PCM) 2231 (serotype O17) was investigated by 1H, 13C NMR spectroscopy, mass spectrometry, chemical analyses and serological methods. The core oligosaccharide is composed of an undecasaccharide, which represents the second core type identified for P. shigelloides serotype O17 LPS. This structure is similar to that of the core oligosaccharide of P. shigelloides strains 302-73 (serotype O1) and 7-63 (serotype O17) and differs from these only by one sugar residue. Serological screening of 55 strains of P. shigelloides with the use of serum against identified core oligosaccharide conjugated with bovine serum albumin (BSA) indicated the presence of similar structures in the LPS core region of 28 O-serotypes. This observation suggests that the core oligosaccharide structure present in strain PCM 2231 could be the most common type among P. shigelloides lipopolysaccharides.


Carbohydrate Research | 2013

The unique structure of complete lipopolysaccharide isolated from semi-rough Plesiomonas shigelloides O37 (strain CNCTC 39/89) containing (2S)-O-(4-oxopentanoic acid)-α-D-Glcp (α-D-Lenose).

Marta Kaszowska; Wojciech Jachymek; Jolanta Lukasiewicz; Tomasz Niedziela; Lennart Kenne; Czeslaw Lugowski

The complete structure of semi-rough lipopolysaccharide (SR-LPS) of Plesiomonas shigelloides CNCTC 39/89 (serotype O37) has been investigated by (1)H and (13)C NMR spectroscopy, matrix-assisted laser-desorption/ionization time-of-flight MS, and chemical methods. The following structure of the single unit of the O-antigen has been established: [formula see text] in which α-D-Lenp is (2S)-O-(4-oxopentanoic acid)-α-D-Glcp residue which has not been found in nature. The absolute configuration of oxopentanoic acid moiety in α-d-Lenose residue was determined by NOESY experiment combined with molecular modeling (MM2 force field). The decasaccharide core is substituted at C-4 of the β-D-Glcp residue with a single pentasaccharide unit. Lipid A is built of a β-D-GlcpN4P-(1→6)-α-D-GlcpN1P disaccharide asymmetrically substituted with fatty acids. It was concluded that the core oligosaccharide and the lipid A are identical with those in P. shigelloides CNCTC 113/92 Niedziela et al. (2002)(9) and Lukasiewicz et al. (2006).(10.)


Frontiers in Microbiology | 2017

Means to Facilitate the Overcoming of Gastric Juice Barrier by a Therapeutic Staphylococcal Bacteriophage A5/80

Ryszard Międzybrodzki; Marlena Kłak; Ewa Jończyk-Matysiak; Barbara Bubak; Anna Wójcik; Marta Kaszowska; Beata Weber-Dąbrowska; Małgorzata Łobocka; Andrzej Górski

In this article we compare the efficacy of different pharmacological agents (ranitidine, and omeprazole) to support phage transit from stomach to distal portions of the gastrointestinal tract in rats. We show that a temporal modification of environment in the animal stomach may protect Twort-like therapeutic antistaphylococcal phage A5/80 (from bacteriophage collection of the Hirszfeld Institute of Immunology and Experimental Therapy PAS in Wroclaw, Poland) from the inactivation by gastric juice effectively enough to enable a significant fraction of orally administered A5/80 to pass to the intestine. Interestingly, we found that yogurt may be a relatively strong in enhancing phage transit. Given the immunomodulating activities of phages our data may suggest that phages and yogurt can act synergistically in mediating their probiotic activities and enhancing the effectiveness of oral phage therapy. We also demonstrate that orally applied phages of similar size, morphology, and sensitivity to acidic environment may differ in their translocation into the bloodstream. This was evident in mice in which a therapeutic staphylococcal phage A5/80 reached the blood upon oral administration combined with antacid agent whilst T4 phage was not detected even when applied in 103 times higher dose. Our findings also suggest that phage penetration from digestive tract to the blood may be species-specific.


Frontiers in Microbiology | 2017

Identification of d-Galactan-III As Part of the Lipopolysaccharide of Klebsiella pneumoniae Serotype O1

Katarina Stojkovic; Valéria Szijártó; Marta Kaszowska; Tomasz Niedziela; Katharina Hartl; Gábor Nagy; Jolanta Lukasiewicz

Klebsiella pneumoniae is a Gram-negative, ubiquitous bacterium capable of causing severe nosocomial infections in individuals with impaired immune system. Emerging multi-drug resistant strains of this species and particularly carbapenem-resistant strains pose an urgent threat to public health. The lipopolysaccharide (LPS) O-antigen is the main surface antigen. It contributes to the virulence of this species and determines the O-serotype of K. pneumoniae isolates. Among the nine main O-serotypes of K. pneumoniae, O1-and O2-type pathogens are causative agents of over 50% of all infections. Serotype O1, the most common O-serotype, expresses complex LPS consisting of d-galactan-I (a polymer built of → 3)-β-d-Galf-(1 → 3)-α-d-Galp-(1 → repeating units) capped by d-galactan-II (built of [ → 3)-α-d-Galp-(1 → 3)-β-d-Galp-(1 →] repeating units). Galactan-I is present as the sole polymer in O2 serotype. Recently, in case of serotype O2, conversion of galactan-I to galactan-III (→ 3)-β-d-Galf-(1 → 3)-[α-d-Galp-(1 → 4)]-α-d-Galp-(1 →) was reported. Substitution of → 3)-α-d-Galp by a branching terminal α-d-Galp was dependent on the presence of the gmlABC operon and had a major impact on the antigenicity of the galactan polymer. Genetic analysis indicated that 40% of the O1 clinical isolates also carry the gmlABC locus; therefore we aimed to characterize the corresponding phenotype of LPS O-antigens. The presence of galactan-III among O1 strains was proven using galactan-III-specific monoclonal antibodies and confirmed by structural analyses performed using sugar and methylation analysis as well as classical and high-resolution magic angle spinning NMR spectroscopy. By using an isogenic mutant pair, we demonstrated that galactan-III expression was dependent on the presence of glycosyltransferases encoded by gmlABC, as was shown previously for the O2 serotype. Furthermore, the galactan-II structures in O1gml+ strains remained unaffected corroborating no functional interactions between the biosynthesis of galactan-III and galactan-II polymers.


Scientific Reports | 2017

Discovery of monoclonal antibodies cross-reactive to novel subserotypes of K. pneumoniae O3

Luis M. Guachalla; Katarina Stojkovic; Katharina Hartl; Marta Kaszowska; Yadhu Kumar; Benjamin Wahl; Tobias Paprotka; Eszter Nagy; Jolanta Lukasiewicz; Gábor Nagy; Valéria Szijártó

Klebsiella pneumoniae is responsible for nosocomial infections causing significant morbidity and mortality. Treatment of newly emerging multi-drug resistant strains is hampered due to severely limited antibiotic choices. Passive immunization targeting LPS O-antigens has been proposed as an alternative therapeutic option, given the limited variability of Klebsiella O-antigens. Here we report that the O3 serogroup, previously considered to have uniform O-antigen built of mannan, represents three different subtypes differing in the number of mannose residues within the O-antigen repeating units. Genetic analysis of the genes encoding mannose polymerization revealed differences that underline the observed structural alterations. The O3 variants represent antigenically different types based on the different reactivity pattern of murine monoclonal antibodies raised against a K. pneumoniae O3 strain. Typing of a collection of K. pneumoniae O3 clinical isolates showed that strains expressing the novel O3b antigen, the tri-mannose form, were more prevalent than those having the penta-mannose form, traditionally called O3, while the tetra-mannose variant, termed here O3a, seems to be rare. A monoclonal antibody cross-reacting with all three O3 sub-serogroups was also selected and shown to bind to the surface of various K. pneumoniae strains expressing different O3 subtypes and capsular antigens.


Carbohydrate Research | 2015

Core oligosaccharide of Escherichia coli B-the structure required for bacteriophage T4 recognition.

Marta Kaszowska; Tomasz Niedziela; Anna Maciejewska; Jolanta Lukasiewicz; Wojciech Jachymek; Czeslaw Lugowski

The structure of Escherichia coli B strain PCM 1935 core oligosaccharide has been investigated by (1)H and (13)C NMR spectroscopy, MALDI-TOF MS and ESI MS(n). It was concluded that the core oligosaccharide is a pentasaccharide with the following structure: ESI MS/MS analysis revealed that the glycine (a minor component) is linked to the →3,7)-l-α-d-Hepp-(1→ residue.


PLOS ONE | 2016

Oral Administration of Polymyxin B Modulates the Activity of Lipooligosaccharide E. coli B against Lung Metastases in Murine Tumor Models

Jagoda Kicielińska; Agnieszka Szczygieł; Joanna Rossowska; Natalia Anger; Katarzyna Kempińska; Marta Świtalska; Marta Kaszowska; Joanna Wietrzyk; Elżbieta Pajtasz-Piasecka

Introduction Polymyxin B (PmB) belongs to the group of cyclic peptide antibiotics, which neutralize the activity of LPS by binding to lipid A. The aim of this study was to analyze the effect of PmB on the biological activity of lipooligosaccharide (LOS E. coli B,rough form of LPS) in vitro and in experimental metastasis models. Results Cultures of murine macrophage J774A.1 cells and murine bone marrow-derived dendritic cells (BM-DC) stimulated in vitro with LOS and supplemented with PmB demonstrated a decrease in inflammatory cytokine production (IL-6, IL-10, TNF-α) and down-regulation of CD40, CD80, CD86 and MHC class II molecule expression. Additionally, PmB suspended in drinking water was given to the C57BL/6 mice seven or five days prior to the intravenous injection of B16 or LLC cells and intraperitoneal application of LOS. This strategy of PmB administration was continued throughout the duration of the experiments (29 or 21 days). In B16 model, statistically significant decrease in the number of metastases in mice treated with PmB and LOS (p<0.01) was found on the 14th day of the experiments, whereas the most intensive changes in surface-antigen expression and ex vivo production of IL-6, IL-1β and TNF-α by peritoneal cells were observed 7 days earlier. By contrast, antigen expression and ex vivo production of IL-6, IL-10, IFN-γ by splenocytes remained relatively high and stable. Statistically significant decrease in LLC metastases number was observed after the application of LOS (p<0.01) and in the group of mice preconditioned by PmB and subsequently treated with LOS (LOS + PmB, p<0.01). Conclusions In conclusion, prolonged in vivo application of PmB was not able to neutralize the LOS-induced immune cell activity but its presence in the organism of treated mice was important in modulation of the LOS-mediated response against the development of metastases.

Collaboration


Dive into the Marta Kaszowska's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomasz Niedziela

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Czeslaw Lugowski

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Anna Maciejewska

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Czeslaw Lugowski

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wojciech Jachymek

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Lennart Kenne

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge