Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marta Kulis is active.

Publication


Featured researches published by Marta Kulis.


Nature Genetics | 2012

Epigenomic analysis detects widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia.

Marta Kulis; Simon Heath; Marina Bibikova; Ana C. Queirós; Alba Navarro; Guillem Clot; Alejandra Martínez-Trillos; Giancarlo Castellano; Isabelle Brun-Heath; Magda Pinyol; Sergio Barberán-Soler; Panagiotis Papasaikas; Pedro Jares; Sílvia Beà; Daniel Rico; Simone Ecker; Miriam Rubio; Romina Royo; Vincent T. Ho; Brandy Klotzle; Lluis Hernández; Laura Conde; Mónica López-Guerra; Dolors Colomer; Neus Villamor; Marta Aymerich; María Rozman; Mònica Bayés; Marta Gut; Josep Lluís Gelpí

We have extensively characterized the DNA methylomes of 139 patients with chronic lymphocytic leukemia (CLL) with mutated or unmutated IGHV and of several mature B-cell subpopulations through the use of whole-genome bisulfite sequencing and high-density microarrays. The two molecular subtypes of CLL have differing DNA methylomes that seem to represent epigenetic imprints from distinct normal B-cell subpopulations. DNA hypomethylation in the gene body, targeting mostly enhancer sites, was the most frequent difference between naive and memory B cells and between the two molecular subtypes of CLL and normal B cells. Although DNA methylation and gene expression were poorly correlated, we identified gene-body CpG dinucleotides whose methylation was positively or negatively associated with expression. We have also recognized a DNA methylation signature that distinguishes new clinico-biological subtypes of CLL. We propose an epigenomic scenario in which differential methylation in the gene body may have functional and clinical implications in leukemogenesis.


Biochimica et Biophysica Acta | 2013

Intragenic DNA methylation in transcriptional regulation, normal differentiation and cancer

Marta Kulis; Ana C. Queirós; Renée Beekman; José I. Martín-Subero

Ever since the discovery of DNA methylation at cytosine residues, the role of this so called fifth base has been extensively studied and debated. Until recently, the majority of DNA methylation studies focused on the analysis of CpG islands associated to promoter regions. However, with the upcoming possibilities to study DNA methylation in a genome-wide context, this epigenetic mark can now be studied in an unbiased manner. As a result, recent studies have shown that not only promoters but also intragenic and intergenic regions are widely modulated during physiological processes and disease. In particular, it is becoming increasingly clear that DNA methylation in the gene body is not just a passive witness of gene transcription but it seems to be actively involved in multiple gene regulation processes. In this review we discuss the potential role of intragenic DNA methylation in alternative promoter usage, regulation of short and long non-coding RNAs, alternative RNA processing, as well as enhancer activity. Furthermore, we summarize how the intragenic DNA methylome is modified both during normal cell differentiation and neoplastic transformation.


Genome Research | 2014

Transcriptome characterization by RNA sequencing identifies a major molecular and clinical subdivision in chronic lymphocytic leukemia

Pedro G. Ferreira; Pedro Jares; Daniel Rico; Gonzalo Gómez-López; Alejandra Martínez-Trillos; Neus Villamor; Simone Ecker; Abel Gonzalez-Perez; David G. Knowles; Jean Monlong; Rory Johnson; Víctor Quesada; Sarah Djebali; Panagiotis Papasaikas; Mónica López-Guerra; Dolors Colomer; Cristina Royo; Maite Cazorla; Magda Pinyol; Guillem Clot; Marta Aymerich; María Rozman; Marta Kulis; David Tamborero; Anaı̈s Gouin; Julie Blanc; Marta Gut; Ivo Gut; Xose S. Puente; David G. Pisano

Chronic lymphocytic leukemia (CLL) has heterogeneous clinical and biological behavior. Whole-genome and -exome sequencing has contributed to the characterization of the mutational spectrum of the disease, but the underlying transcriptional profile is still poorly understood. We have performed deep RNA sequencing in different subpopulations of normal B-lymphocytes and CLL cells from a cohort of 98 patients, and characterized the CLL transcriptional landscape with unprecedented resolution. We detected thousands of transcriptional elements differentially expressed between the CLL and normal B cells, including protein-coding genes, noncoding RNAs, and pseudogenes. Transposable elements are globally derepressed in CLL cells. In addition, two thousand genes-most of which are not differentially expressed-exhibit CLL-specific splicing patterns. Genes involved in metabolic pathways showed higher expression in CLL, while genes related to spliceosome, proteasome, and ribosome were among the most down-regulated in CLL. Clustering of the CLL samples according to RNA-seq derived gene expression levels unveiled two robust molecular subgroups, C1 and C2. C1/C2 subgroups and the mutational status of the immunoglobulin heavy variable (IGHV) region were the only independent variables in predicting time to treatment in a multivariate analysis with main clinico-biological features. This subdivision was validated in an independent cohort of patients monitored through DNA microarrays. Further analysis shows that B-cell receptor (BCR) activation in the microenvironment of the lymph node may be at the origin of the C1/C2 differences.


Nature Genetics | 2015

Whole-genome fingerprint of the DNA methylome during human B cell differentiation.

Marta Kulis; Angelika Merkel; Simon Heath; Ana C. Queirós; Ronald Schuyler; Giancarlo Castellano; Renée Beekman; Emanuele Raineri; Anna Esteve; Guillem Clot; Néria Verdaguer-Dot; Martí Duran-Ferrer; Nuria Russiñol; Roser Vilarrasa-Blasi; Simone Ecker; Vera Pancaldi; Daniel Rico; Lidia Agueda; Julie Blanc; David C. Richardson; Laura Clarke; Avik Datta; Marien Pascual; Xabier Agirre; Felipe Prosper; Diego Alignani; Bruno Paiva; Gersende Caron; Thierry Fest; Marcus O. Muench

We analyzed the DNA methylome of ten subpopulations spanning the entire B cell differentiation program by whole-genome bisulfite sequencing and high-density microarrays. We observed that non-CpG methylation disappeared upon B cell commitment, whereas CpG methylation changed extensively during B cell maturation, showing an accumulative pattern and affecting around 30% of all measured CpG sites. Early differentiation stages mainly displayed enhancer demethylation, which was associated with upregulation of key B cell transcription factors and affected multiple genes involved in B cell biology. Late differentiation stages, in contrast, showed extensive demethylation of heterochromatin and methylation gain at Polycomb-repressed areas, and genes with apparent functional impact in B cells were not affected. This signature, which has previously been linked to aging and cancer, was particularly widespread in mature cells with an extended lifespan. Comparing B cell neoplasms with their normal counterparts, we determined that they frequently acquire methylation changes in regions already undergoing dynamic methylation during normal B cell differentiation.


Nature Genetics | 2015

DNA methylome analysis in Burkitt and follicular lymphomas identifies differentially methylated regions linked to somatic mutation and transcriptional control

Helene Kretzmer; Stephan H. Bernhart; Wei Wang; Andrea Haake; Marc A. Weniger; Anke K. Bergmann; Matthew J. Betts; Enrique Carrillo-de-Santa-Pau; Jana Gutwein; Julia Richter; Volker Hovestadt; Bingding Huang; Daniel Rico; Frank Jühling; Julia Kolarova; Qianhao Lu; Christian Otto; Rabea Wagener; Judith Arnolds; Birgit Burkhardt; Alexander Claviez; Hans G. Drexler; Sonja Eberth; Roland Eils; Paul Flicek; Siegfried Haas; Michael Hummel; Dennis Karsch; Hinrik H D Kerstens; Wolfram Klapper

Although Burkitt lymphomas and follicular lymphomas both have features of germinal center B cells, they are biologically and clinically quite distinct. Here we performed whole-genome bisulfite, genome and transcriptome sequencing in 13 IG-MYC translocation–positive Burkitt lymphoma, nine BCL2 translocation–positive follicular lymphoma and four normal germinal center B cell samples. Comparison of Burkitt and follicular lymphoma samples showed differential methylation of intragenic regions that strongly correlated with expression of associated genes, for example, genes active in germinal center dark-zone and light-zone B cells. Integrative pathway analyses of regions differentially methylated in Burkitt and follicular lymphomas implicated DNA methylation as cooperating with somatic mutation of sphingosine phosphate signaling, as well as the TCF3-ID3 and SWI/SNF complexes, in a large fraction of Burkitt lymphomas. Taken together, our results demonstrate a tight connection between somatic mutation, DNA methylation and transcriptional control in key B cell pathways deregulated differentially in Burkitt lymphoma and other germinal center B cell lymphomas.


Leukemia | 2015

A B-cell epigenetic signature defines three biologic subgroups of chronic lymphocytic leukemia with clinical impact.

Ana C. Queirós; Neus Villamor; Guillem Clot; Alejandra Martínez-Trillos; Marta Kulis; Arcadi Navarro; Eva Maria Murga Penas; Sandrine Jayne; Aneela Majid; Julia Richter; Anke K. Bergmann; J Kolarova; Cristina Royo; Nuria Russiñol; Giancarlo Castellano; M Pinyol; Sílvia Beà; Itziar Salaverria; Mónica López-Guerra; Dolors Colomer; M. Aymerich; María Rozman; Julio Delgado; Eva Giné; Marcos González-Díaz; Xose S. Puente; Reiner Siebert; Martin J. S. Dyer; Carlos López-Otín; Rozman C

Prospective identification of patients with chronic lymphocytic leukemia (CLL) destined to progress would greatly facilitate their clinical management. Recently, whole-genome DNA methylation analyses identified three clinicobiologic CLL subgroups with an epigenetic signature related to different normal B-cell counterparts. Here, we developed a clinically applicable method to identify these subgroups and to study their clinical relevance. Using a support vector machine approach, we built a prediction model using five epigenetic biomarkers that was able to classify CLL patients accurately into the three subgroups, namely naive B-cell-like, intermediate and memory B-cell-like CLL. DNA methylation was quantified by highly reproducible bisulfite pyrosequencing assays in two independent CLL series. In the initial series (n=211), the three subgroups showed differential levels of IGHV (immunoglobulin heavy-chain locus) mutation (P<0.001) and VH usage (P<0.03), as well as different clinical features and outcome in terms of time to first treatment (TTT) and overall survival (P<0.001). A multivariate Cox model showed that epigenetic classification was the strongest predictor of TTT (P<0.001) along with Binet stage (P<0.001). These findings were corroborated in a validation series (n=97). In this study, we developed a simple and robust method using epigenetic biomarkers to categorize CLLs into three subgroups with different clinicobiologic features and outcome.


PLOS ONE | 2012

DNA Hypomethylation Affects Cancer-Related Biological Functions and Genes Relevant in Neuroblastoma Pathogenesis

Gemma Mayol; José I. Martín-Subero; José Ríos; Ana C. Queirós; Marta Kulis; Mariona Suñol; Manel Esteller; Soledad Gómez; Idoia Garcia; Carmen Torres; Eva Rodríguez; Patricia Galván; Jaume Mora; Cinzia Lavarino

Neuroblastoma (NB) pathogenesis has been reported to be closely associated with numerous genetic alterations. However, underlying DNA methylation patterns have not been extensively studied in this developmental malignancy. Here, we generated microarray-based DNA methylation profiles of primary neuroblastic tumors. Stringent supervised differential methylation analyses allowed us to identify epigenetic changes characteristic for NB tumors as well as for clinical and biological subtypes of NB. We observed that gene-specific loss of DNA methylation is more prevalent than promoter hypermethylation. Remarkably, such hypomethylation affected cancer-related biological functions and genes relevant to NB pathogenesis such as CCND1, SPRR3, BTC, EGF and FGF6. In particular, differential methylation in CCND1 affected mostly an evolutionary conserved functionally relevant 3′ untranslated region, suggesting that hypomethylation outside promoter regions may play a role in NB pathogenesis. Hypermethylation targeted genes involved in cell development and proliferation such as RASSF1A, POU2F2 or HOXD3, among others. The results derived from this study provide new candidate epigenetic biomarkers associated with NB as well as insights into the molecular pathogenesis of this tumor, which involves a marked gene-specific hypomethylation.


FEBS Journal | 2008

Ciz1, a p21Cip1/Waf1-interacting zinc finger protein and DNA replication factor, is a novel molecular partner for human enhancer of rudimentary homolog

Anna Łukasik; Katarzyna A. Uniewicz; Marta Kulis; Piotr Kozlowski

Enhancer of rudimentary homolog (Drosophila) (ERH) is a small, highly conserved, nuclear protein with a unique three‐dimensional structure, whose gene has been identified in animals, plants and protists, but not in fungi. Involvement of ERH in fundamental processes such as regulation of pyrimidine metabolism, cell cycle progression, transcription and cell growth control has been suggested. Here, employing a yeast two‐hybrid system, a glutathione S‐transferase pull‐down assay and tandem MS, we demonstrate that Ciz1 is a bona fide interactor of human ERH. Ciz1 is a nuclear zinc finger protein interacting with p21Cip1/Waf1, a universal inhibitor of cyclin‐dependent kinases, and is a DNA replication factor. The region of Ciz1 necessary for the interaction with ERH spans residues 531–644, encompassing its first zinc finger motif. This region overlaps the p21Cip1/Waf1‐binding site, suggesting that the interaction with ERH could block the binding of p21Cip1/Waf1 by Ciz1 in the cell. When ERH and Ciz1 are coexpressed in HeLa cells, Ciz1 recruits ERH to DNA replication foci.


Cell Reports | 2015

Cell-Cycle-Dependent Reconfiguration of the DNA Methylome during Terminal Differentiation of Human B Cells into Plasma Cells

Gersende Caron; Mourad Hussein; Marta Kulis; Céline Delaloy; fabrice chatonnet; Amandine Pignarre; Stéphane Avner; Maud Lemarié; Elise A. Mahé; Núria Verdaguer-Dot; Ana C. Queirós; Karin Tarte; José I. Martín-Subero; Gilles Salbert; Thierry Fest

Molecular mechanisms underlying terminal differentiation of B cells into plasma cells are major determinants of adaptive immunity but remain only partially understood. Here we present the transcriptional and epigenomic landscapes of cell subsets arising from activation of human naive B cells and differentiation into plasmablasts. Cell proliferation of activated B cells was linked to a slight decrease in DNA methylation levels, but followed by a committal step in which an S phase-synchronized differentiation switch was associated with an extensive DNA demethylation and local acquisition of 5-hydroxymethylcytosine at enhancers and genes related to plasma cell identity. Downregulation of both TGF-?1/SMAD3 signaling and p53 pathway supported this final step, allowing the emergence of a CD23-negative subpopulation in transition from B cells to plasma cells. Remarkably, hydroxymethylation of PRDM1, a gene essential for plasma cell fate, was coupled to progression in S phase, revealing an intricate connection among cell cycle, DNA (hydroxy)methylation, and cell fate determination.


PLOS ONE | 2013

Identification of Amino Acid Residues of ERH Required for Its Recruitment to Nuclear Speckles and Replication Foci in HeLa Cells

Monika I. Banko; Marek K. Krzyzanowski; Paulina Turcza; Zuzanna Maniecka; Marta Kulis; Piotr Kozlowski

ERH is a small, highly evolutionarily conserved nuclear protein of unknown function. Its three-dimensional structure is absolutely unique and it can form a homodimer through a β sheet surface. ERH has been shown to interact, among others, with PDIP46/SKAR and Ciz1. When coexpressed with the latter protein, ERH accumulates in replication foci in the nucleus of HeLa cells. Here, we report that when ERH is coexpressed with PDIP46/SKAR in HeLa cells, it is recruited to nuclear speckles, and identify amino acid residues critical for targeting ERH to both these subnuclear structures. ERH H3A Q9A shows a diminished recruitment to nuclear speckles but it is recruited to replication foci. ERH E37A T51A is very poorly recruited to replication foci while still accumulating in nuclear speckles. Consequently, ERH H3A Q9A E37A T51A is recruited neither to nuclear speckles nor to replication foci. The lack of interactions of these three ERH forms with PDIP46/SKAR and/or Ciz1 was further confirmed in vitro by GST pull-down assay. The residues whose substitutions interfere with the accumulation in nuclear speckles are situated on the β sheet surface of ERH, indicating that only the monomer of ERH can interact with PDIP46/SKAR. Substitutions affecting the recruitment to replication foci map to the other side of ERH, near a long loop between the α1 and α2 helices, thus both the monomer and the dimer of ERH could interact with Ciz1. The construction of the ERH mutants not recruited to nuclear speckles or replication foci will facilitate further studies on ERH actions in these subnuclear structures.

Collaboration


Dive into the Marta Kulis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guillem Clot

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julie Blanc

Pompeu Fabra University

View shared research outputs
Top Co-Authors

Avatar

Marta Gut

Pompeu Fabra University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge