Marta Llop
Laboratory of Molecular Biology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marta Llop.
Leukemia Research | 2013
Óscar Fuster; Marta Llop; Sandra Dolz; Paloma García; Esperanza Such; Mariam Ibáñez; Irene Luna; Inés Gómez; María López; José Cervera; Pau Montesinos; Federico Moscardó; Lourdes Cordón; Pilar Solves; Inmaculada de Juan; Sarai Palanca; Pascual Bolufer; Miguel A. Sanz; Eva Barragán
The MYBL2 gene encodes a transcription factor implicated in cell proliferation and maturation whose amplification or overexpression has been associated with different human malignancies, suggesting that it could be implicated in tumorigenesis. We analyzed MYBL2 expression and its prognostic value in 291 patients with de novo acute myeloid leukemia (AML) and we also evaluated its association with microRNAs 29 and 30 families. MYBL2 expression in AML patients was increased relative to CD34+ cells. Moreover, MYBL2 overexpression was associated with lower expression of miR-30a (P=0.024), miR-30b (P=0.021) and miR-30c (P=0.009). Multivariate analysis showed that MYBL2 expression was an independent factor for disease-free survival (HR 3.0, 95% CI 1.5-6.0, P=0.002) and cumulative incidence of relapse (HR 2.6, 95% CI 1.2-5.6, P=0.015) in patients with an intermediate-risk karyotype. In conclusion, our data showed that MYBL2 expression analysis could be useful to define subgroups of patients with poor prognosis.
The Journal of Molecular Diagnostics | 2012
Mariam Ibáñez; Esperanza Such; José Cervera; Irene Luna; Inés Gómez-Seguí; María López-Pavía; Sandra Dolz; Eva Barragán; Óscar Fuster; Marta Llop; Rebeca Rodríguez-Veiga; Amparo Avaria; Silvestre Oltra; M. Leonor Senent; Federico Moscardó; Pau Montesinos; David Martínez-Cuadrón; Guillermo Martin; Miguel A. Sanz
Recently, many novel molecular abnormalities were found to be distinctly associated with acute myeloid leukemia (AML). However, their clinical relevance and prognostic implications are not well established. We developed a new combination of high-resolution melting assays on a LightCycler 480 and direct sequencing to detect somatic mutations of ASXL1 (exon 12), IDH1 (exon 4), IDH2 (exon 4), and c-CBL (exons 8 and 9) genes to know their incidence and prognostic effect in a cohort of 175 patients with de novo AML: 16 patients (9%) carried ASXL1 mutations, 16 patients had IDH variations (3% with IDH1(R132) and 6% with IDH2(R140)), and none had c-CBL mutations. Patients with ASXL1 mutations did not harbor IDH1, [corrected] or CEBPA mutations, and a combination of ASXL1 and IDH2 mutations was found only in one patient. In addition, we did not find IDH1 and FLT3 or CEBPA mutations concurrently or IDH2 with CEBPA. IDH1 and IDH2 mutations were mutually exclusive. Alternatively, NPM1 mutations were concurrently found with ASXL1, IDH1, or IDH2 with a variable incidence. Mutations were not significantly correlated with any of the clinical and biological features studied. High-resolution melting is a reliable, rapid, and efficient screening technique for mutation detection in AML. The incidence for the studied genes was in the range of those previously reported. We were unable to find an effect on the outcome.
Haematologica | 2015
Eva Barragán; María C. Chillón; Remedios Castello-Cros; Nerea Marcotegui; María Isabel Prieto; Montserrat Hoyos; Raffaella Pippa; Marta Llop; Amaia Etxabe; José Cervera; Gabriela Rodriguez; Ismael Buño; José Rifón; Jorge Sierra; Marcos González; María José Calasanz; Miguel A. Sanz; María D. Odero
Acute myeloid leukemia (AML) comprises a biologically and clinically heterogeneous group of aggressive disorders that occur as a consequence of a wide variety of genetic and epigenetic abnormalities in hematopoietic progenitors. Despite significant advances in the understanding of AML biology,
Leukemia Research | 2013
Irene Luna; Esperanza Such; José Cervera; Eva Barragán; Mariam Ibáñez; Inés Gómez-Seguí; María López-Pavía; Marta Llop; Óscar Fuster; Sandra Dolz; Silvestre Oltra; Carmen Alonso; Belén Vera; Ignacio Lorenzo; David Martínez-Cuadrón; Pau Montesinos; M. Leonor Senent; Federico Moscardó; Pascual Bolufer; Miguel A. Sanz
WT1 plays a dual role in leukemia development, probably due to an imbalance in the expression of the 4 main WT1 isoforms. We quantify their expression and evaluate them in a series of AML patients. Our data showed a predominant expression of isoform D in AML, although in a lower quantity than in normal CD34+ cells. We found a positive correlation between the total WT1 expression and A, B and C isoforms. The overexpression of WT1 in AML might be due to a relative increase in A, B and C isoforms, together with a relative decrease in isoform D expression.
PLOS ONE | 2016
Mariam Ibáñez; Luz Garcia-Alonso; Esperanza Such; Jorge Jiménez-Almazán; Enrique Vidal; Eva Barragán; María López-Pavía; Marta Llop; Ivan Martin; Inés Gómez-Seguí; Pau Montesinos; Miguel A. Sanz; Joaquín Dopazo; José Cervera
Preliminary Acute Promyelocytic Leukemia (APL) whole exome sequencing (WES) studies have identified a huge number of somatic mutations affecting more than a hundred different genes mainly in a non-recurrent manner, suggesting that APL is a heterogeneous disease with secondary relevant changes not yet defined. To extend our knowledge of subtle genetic alterations involved in APL that might cooperate with PML/RARA in the leukemogenic process, we performed a comprehensive analysis of somatic mutations in APL combining WES with sequencing of a custom panel of targeted genes by next-generation sequencing. To select a reduced subset of high confidence candidate driver genes, further in silico analysis were carried out. After prioritization and network analysis we found recurrent deleterious mutations in 8 individual genes (STAG2, U2AF1, SMC1A, USP9X, IKZF1, LYN, MYCBP2 and PTPN11) with a strong potential of being involved in APL pathogenesis. Our network analysis of multiple mutations provides a reliable approach to prioritize genes for additional analysis, improving our knowledge of the leukemogenesis interactome. Additionally, we have defined a functional module in the interactome of APL. The hypothesis is that the number, or the specific combinations, of mutations harbored in each patient might not be as important as the disturbance caused in biological key functions, triggered by several not necessarily recurrent mutations.
Leukemia & Lymphoma | 2016
Sandra Dolz; Paloma García; Marta Llop; Óscar Fuster; Irene Luna; Mariam Ibáñez; Inés Gómez; María Elena Pérez López; Esperanza Such; José Cervera; Miguel A. Sanz; Inmaculada de Juan; Sarai Palanca; Rosa Murria; Pascual Bolufer; Eva Barragán
Dysregulation of MYBL2 has been associated to tumorigenesis and the S427G polymorphism could induce partial inactivation of MYBL2, associating it with cancer risk. It has previously been shown that MYBL2 was over-expressed in some acute myeloid leukemias (AML), portending poor prognosis. However, to date no studies have investigated the S427G or other genetic variants of MYBL2 in AML. This study analyzed the S427G in 197 AML patients and 179 controls and screened the MYBL2 sequence in patients. In contrast to other studies in solid tumors, the S427G was not associated with the incidence of AML. This study detected four unannotated genetic alterations, of which the Q67X could be involved in MYBL2 dysfunction. Eight polymorphisms were identified, among which the rs73116571, located in a splicing region, was associated with higher incidence in AML and weaker MYBL2 expression, suggesting pre-disposition to AML. Additional functional studies should be performed to verify these genetic variations as possible targets in AML.
The Journal of Molecular Diagnostics | 2013
Sandra Dolz; Eva Barragán; Óscar Fuster; Marta Llop; José Cervera; Esperanza Such; Inmaculada de Juan; Sarai Palanca; Rosa Murria; Pascual Bolufer; Irene Luna; Inés Gómez; María López; Mariam Ibáñez; Miguel A. Sanz
The recent World Health Organization classification recognizes different subtypes of acute myeloid leukemia (AML) according to the presence of several recurrent genetic abnormalities. Detection of these abnormalities and other molecular changes is of increasing interest because it contributes to a refined diagnosis and prognostic assessment in AML and enables monitoring of minimal residual disease. These genetic abnormalities can be detected using single RT-PCR, although the screening is still labor intensive and costly. We have developed a novel real-time RT-PCR assay to simultaneously detect 15 AML-associated rearrangements that is a simple and easily applicable method for use in clinical diagnostic laboratories. This method showed 100% specificity and sensitivity (95% confidence interval, 91% to 100% and 92% to 100%, respectively). The procedure was validated in a series of 105 patients with AML. The method confirmed all translocations detected using standard cytogenetics and fluorescence in situ hybridization and some additional undetected rearrangements. Two patients demonstrated two molecular rearrangements simultaneously, with BCR-ABL1 implicated in both, in addition to RUNX1-MECOM in one patient and PML-RARA in another. In conclusion, this novel real-time RT-PCR assay for simultaneous detection of multiple AML-associated fusion genes is a versatile and sensitive method for reliable screening of recurrent rearrangements in AML.
Oncotarget | 2017
Victor Pallarès; Montserrat Hoyos; M. Carmen Chillón; Eva Barragán; M. Isabel Prieto Conde; Marta Llop; María Virtudes Céspedes; Josep Nomdedeu; Salut Brunet; Miguel A. Sanz; Marcos González-Díaz; Jorge Sierra; Isolda Casanova; Ramon Mangues
Intermediate-risk acute myeloid leukemia (IR-AML) is the largest subgroup of AML patients and is highly heterogeneous. Whereas adverse and favourable risk patients have well-established treatment protocols, IR-AML patients have not. It is, therefore, crucial to find novel factors that stratify this subgroup to implement risk-adapted strategies. The CAS (Crk-associated substrate) adaptor protein family regulates cell proliferation, survival, migration and adhesion. Despite its association with metastatic dissemination and prognosis of different solid tumors, the role of these proteins in hematological malignancies has been scarcely evaluated. Nevertheless, previous work has established an important role for the CAS family members NEDD9 or BCAR1 in the migratory and dissemination capacities of myeloid cells. On this basis, we hypothesized that NEDD9 or BCAR1 expression levels could associate with survival in IR-AML patients and become new prognostic markers. To that purpose, we assessed BCAR1 and NEDD9 gene expression in a cohort of 73 adult AML patients validating the results in an independent cohort (n = 206). We have identified NEDD9, but not BCAR1, as a new a marker for longer overall and disease-free survival, and for lower cumulative incidence of relapse. In summary, NEDD9 gene expression is an independent prognostic factor for favourable prognosis in IR-AML patients.Intermediate-risk acute myeloid leukemia (IR-AML) is the largest subgroup of AML patients and is highly heterogeneous. Whereas adverse and favourable risk patients have well-established treatment protocols, IR-AML patients have not. It is, therefore, crucial to find novel factors that stratify this subgroup to implement risk-adapted strategies. The CAS (Crk-associated substrate) adaptor protein family regulates cell proliferation, survival, migration and adhesion. Despite its association with metastatic dissemination and prognosis of different solid tumors, the role of these proteins in hematological malignancies has been scarcely evaluated. Nevertheless, previous work has established an important role for the CAS family members NEDD9 or BCAR1 in the migratory and dissemination capacities of myeloid cells. On this basis, we hypothesized that NEDD9 or BCAR1 expression levels could associate with survival in IR-AML patients and become new prognostic markers. To that purpose, we assessed BCAR1 and NEDD9 gene expression in a cohort of 73 adult AML patients validating the results in an independent cohort (n = 206). We have identified NEDD9, but not BCAR1, as a new a marker for longer overall and disease-free survival, and for lower cumulative incidence of relapse. In summary, NEDD9 gene expression is an independent prognostic factor for favourable prognosis in IR-AML patients.
PLOS ONE | 2014
Inés Gómez-Seguí; Dolors Sánchez-Izquierdo; Eva Barragán; Esperanza Such; Irene Luna; María López-Pavía; Mariam Ibáñez; Eva Villamón; Carmen Alonso; Ivan Martin; Marta Llop; Sandra Dolz; Óscar Fuster; Pau Montesinos; Carolina Cañigral; Blanca Boluda; Claudia Salazar; José Cervera; Miguel A. Sanz
Acute promyelocytic leukemia (APL) is characterized by the t(15;17)(q22;q21), but additional chromosomal abnormalities (ACA) and other rearrangements can contribute in the development of the whole leukemic phenotype. We hypothesized that some ACA not detected by conventional techniques may be informative of the onset of APL. We performed the high-resolution SNP array (SNP-A) 6.0 (Affymetrix) in 48 patients diagnosed with APL on matched diagnosis and remission sample. Forty-six abnormalities were found as an acquired event in 23 patients (48%): 22 duplications, 23 deletions and 1 Copy-Neutral Loss of Heterozygocity (CN-LOH), being a duplication of 8(q24) (23%) and a deletion of 7(q33-qter) (6%) the most frequent copy-number abnormalities (CNA). Four patients (8%) showed CNAs adjacent to the breakpoints of the translocation. We compared our results with other APL series and found that, except for dup(8q24) and del(7q33-qter), ACA were infrequent (≤3%) but most of them recurrent (70%). Interestingly, having CNA or FLT3 mutation were mutually exclusive events. Neither the number of CNA, nor any specific CNA was associated significantly with prognosis. This study has delineated recurrent abnormalities in addition to t(15;17) that may act as secondary events and could explain leukemogenesis in up to 40% of APL cases with no ACA by conventional cytogenetics.
PLOS ONE | 2018
Mariam Ibáñez; Esperanza Such; Luz Garcia-Alonso; Alessandro Liquori; María López-Pavía; Marta Llop; Carmen Alonso; Eva Barragán; Inés Gómez-Seguí; Alexander Neef; David Hervás; Pau Montesinos; Guillermo Sanz; Miguel A. Sanz; Joaquín Dopazo; José Cervera
Acute myeloid leukemia (AML) is associated with the sequential accumulation of acquired genetic alterations. Although at diagnosis cytogenetic alterations are frequent in AML, roughly 50% of patients present an apparently normal karyotype (NK), leading to a highly heterogeneous prognosis. Due to this significant heterogeneity, it has been suggested that different molecular mechanisms may trigger the disease with diverse prognostic implications. We performed whole-exome sequencing (WES) of tumor-normal matched samples of de novo AML-NK patients lacking mutations in NPM1, CEBPA or FLT3-ITD to identify new gene mutations with potential prognostic and therapeutic relevance to patients with AML. Novel candidate-genes, together with others previously described, were targeted resequenced in an independent cohort of 100 de novo AML patients classified in the cytogenetic intermediate-risk (IR) category. A mean of 4.89 mutations per sample were detected in 73 genes, 35 of which were mutated in more than one patient. After a network enrichment analysis, we defined a single in silico model and established a set of seed-genes that may trigger leukemogenesis in patients with normal karyotype. The high heterogeneity of gene mutations observed in AML patients suggested that a specific alteration could not be as essential as the interaction of deregulated pathways.