Marta Michalik
Jagiellonian University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marta Michalik.
Carcinogenesis | 2014
Damian Ryszawy; Michal Sarna; Monika Rak; Katarzyna Szpak; Sylwia Kedracka-Krok; Marta Michalik; Maciej Siedlar; Ewa K. Zuba-Surma; Kvetoslava Burda; Włodzimierz Korohoda; Zbigniew Madeja; Jarosław Czyż
Suppressive function of connexin(Cx)43 in carcinogenesis was recently contested by reports that showed a multifaceted function of Cx43 in cancer progression. These studies did not attempt to model the dynamics of intratumoral heterogeneity involved in the metastatic cascade. An unorthodox look at the phenotypic heterogeneity of prostate cancer cells in vitro enabled us to identify links between Cx43 functions and Snail-1-regulated functional speciation of invasive cells. Incomplete Snail-1-dependent phenotypic shifts accounted for the formation of phenotypically stable subclones of AT-2 cells. These subclones showed diverse predilection for invasive behavior. High Snail-1 and Cx43 levels accompanied high motility and nanomechanical elasticity of the fibroblastoid AT-2_Fi2 subclone, which determined its considerable invasiveness. Transforming growth factor-β and ectopic Snail-1 overexpression induced invasiveness and Cx43 expression in epithelioid AT-2 subclones and DU-145 cells. Functional links between Snail-1 function and Cx43 expression were confirmed by Cx43 downregulation and phenotypic shifts in AT-2_Fi2, DU-145 and MAT-LyLu cells upon Snail-1 silencing. Corresponding morphological changes and Snail-1 downregulation were seen upon Cx43 silencing in AT-2_Fi2 cells. This indicates that feedback loops between both proteins regulate cell invasive behavior. We demonstrate that Cx43 may differentially predispose prostate cancer cells for invasion in a coupling-dependent and coupling-independent manner. When extrapolated to in vivo conditions, these data show the complexity of Cx43 functions during the metastatic cascade of prostate cancer. They may explain how Cx43 confers a selective advantage during cooperative invasion of clonally evolving, invasive prostate cancer cell subpopulations.
European Journal of Pharmacology | 2013
Marta Michalik; Ewelina Soczek; Milena Kosińska; Monika Rak; Katarzyna Wójcik; Sławomir Lasota; Malgorzata Pierzchalska; Jarosław Czyż; Zbigniew Madeja
Chronic inflammation of the airways and structural changes in the bronchial wall are basic hallmarks of asthma. Human bronchial fibroblasts derived from patients with diagnosed asthma display in vitro predestination towards TGF-β-induced fibroblast-to-myofibroblast transition (FMT), a key event in the bronchial wall remodelling. Statins inhibit 3-hydroxymethyl-3-glutaryl coenzyme A reductase, a key enzyme in the cholesterol synthesis pathway and are widely used as antilipidemic drugs. The pleiotropic anti-inflammatory effects of statins, independent of their cholesterol-lowering capacity, are also well established. Since commonly used anti-asthmatic drugs do not reverse the structural remodelling of the airways and statins have tentative anti-asthmatic activity, we have studied the effect of lovastatin on FMT in populations of human bronchial fibroblasts derived from asthmatic patients. We demonstrate that the intensity of FMT induced by TGF-β1 was strongly and dose-dependently attenuated by lovastatin. Furthermore, we show that neither the suppression of prenylation of signalling proteins nor the effect on reactive oxygen species formation are important for lovastatin-induced inhibition of myofibroblast differentiation. On the other hand, we show that a squalene synthase inhibitor, zaragozic acid A, reduced the TGF-β1-induced FMT to an extent comparable to lovastatin effect. Additionally we demonstrate that in bronchial fibroblast populations, both inhibitors (lovastatin and zaragozic acid A) attenuate the TGF-β1-induced Smad2 nuclear translocation in a manner dependent on intracellular cholesterol level. Our data suggest that statins can directly, by decrease of intracellular cholesterol level, affect basic cell signalling events crucial for asthmatic processes and potentially prevent perilous bronchial wall remodelling associated with intensive myofibroblast formation.
BioTechniques | 2012
Malgorzata Pierzchalska; Maja Grabacka; Marta Michalik; Krzysztof Zyla; Piotr Pierzchalski
Investigating intestinal physiology in vitro remains challenging due to the lack of an effective primary enterocyte culture system. Recently developed protocols for growing organoids containing crypts and villus from adult mouse intestinal epithelium in Matrigel present an attractive alternative to the classical techniques. However, these approaches require the use of sophisticated and expensive serum-free medium supplemented with epithelial growth factor (EGF), Wnt agonist (R-spondin 1), and bone morphogenetic protein inhibitor (Noggin) in high concentrations. Here we demonstrate that is possible to use an isolated chicken embryonic intestinal epithelium to create such an organoid culture. Structures formed in Matrigel matrix in the first two days following isolation survive and enlarge during ensuing weeks. They have the appearance of empty spheres and comprise cells expressing cytokeratin (an epithelial cell marker), villin (a marker of enterocytes), and Sox-9 (a transcription factor characteristic of progenitors and stem cells of intestinal crypts). With chicken embryonic tissue as a source of organoids, prostaglandin E2 is as effective as R-spondin 1 and Noggin in promoting sustained growth and survival of epithelial spheroids.
Cellular & Molecular Biology Letters | 2008
Agnieszka Galanty; Marta Michalik; Łukasz Sędek; Irma Podolak
We investigated the effect of a triterpene saponoside from Lysimachia thyrsiflora L. upon the viability, proliferation, morphology and cell motility of human melanoma HTB-140 cells and human skin fibroblasts (HSFs). The compound, denoted LTS-4, decreased the viability and rate of cell growth of both cell types in a time-and dose-dependent manner, and proved cytotoxic against cancer cells at significantly lower concentrations than for fibroblasts. LTS-4 also affected the morphology of the examined cells, causing vacuolisation and actin cytoskeleton disintegration, and had an inhibitory effect on the tumour cell motility.
Expert Opinion on Therapeutic Targets | 2015
Katarzyna Piwowarczyk; Ewa Wybieralska; Jarosław Baran; Julia Borowczyk; Paulina Rybak; Milena Kosińska; Anna Julia Wlodarczyk; Marta Michalik; Maciej Siedlar; Zbigniew Madeja; Jerzy Dobrucki; Krzysztof Reiss; Jarosław Czyż
Objective: Extravasation of circulating cancer cells is an important step of the metastatic cascade and a potential target for anti-cancer strategies based on vasoprotective drugs. Reports on anti-cancer effects of fenofibrate (FF) prompted us to analyze its influence on the endothelial barrier function during prostate cancer cell diapedesis. Research design and methods: In vitro co-cultures of endothelial cells with cancer cells imitate the ‘metastatic niche’ in vivo. We qualitatively and quantitatively estimated the effect of 25 μM FF on the events which accompany prostate carcinoma cell diapedesis, with the special emphasis on endothelial cell mobilization. Results: Fenofibrate attenuated cancer cell diapedesis via augmenting endothelial cell adhesion to the substratum rather than through the effect on intercellular communication networks within the metastatic niche. The inhibition of endothelial cell motility was accompanied by the activation of PPARα-dependent and PPARα-independent reactive oxygen species signaling, Akt and focal adhesion kinase (FAK) phosphorylation, in the absence of cytotoxic effects in endothelial cells. Conclusions: Fenofibrate reduces endothelial cell susceptibility to the paracrine signals received from prostate carcinoma cells, thus inhibiting endothelial cell mobilization and reducing paracellular permeability of endothelium in the metastatic niche. Our data provide a mechanistic rationale for extending the clinical use of FF and for the combination of this well tolerated vasoactive drug with the existing multidrug regimens used in prostate cancer therapy.
Toxicology | 2002
Jolanta Sroka; Zbigniew Madeja; Marta Michalik; Stanisław Przestalski; Włodzimierz Korohoda
The effect of triethyllead (TriEL) on motile activity, structure of cytoskeleton and chemotaxis of Dictyostelium discoideum amoebae in developing concentration gradients of folic acid (FA) and cAMP has been studied. It was observed that 3 microM TriEL had little or no effect on locomotion and chemotactic response of cells, whereas 5 microM TriEL strongly reduced the motile activity of Dictyostelium discoideum amoebae and inhibited their chemotaxis towards cAMP, but not towards FA. FA was found to restore the motile activity of Dictyostelium discoideum, inhibited by TriEL. A similar effect was observed in the presence of other antioxidants, i.e. ascorbic acid and sodium selenite, suggesting that oxidative stress may be involved in the action of TriEL. Moreover, the treatment of Dictyostelium amoebae with 5 microM TriEL caused disruption of microtubules while 3 microM TriEL had little effect on their structure. FA caused restoration of microtubules only in some cells within 1 h of incubation, i.e. when the directional movement of cells towards this chemoattractant was already observed. However, their organization was significantly different from that observed in the untreated cells, suggesting that microtubule undisturbed organisation may be not necessary for Dictyostelium discoideum amoebae locomotion and chemotaxis
Journal of Allergy | 2012
Marta Michalik; Katarzyna Wójcik; Bogdan Jakiela; Katarzyna Szpak; Malgorzata Pierzchalska; Marek Sanak; Zbigniew Madeja; Jarosław Czyż
Bronchial asthma is a chronic disorder accompanied by phenotypic transitions of bronchial epithelial cells, smooth muscle cells, and fibroblasts. Human bronchial fibroblasts (HBFs) derived from patients with diagnosed asthma display predestination towards TGF-β-induced phenotypic switches. Since the interference between TGF-β and GSK-3β signaling contributes to pathophysiology of chronic lung diseases, we investigated the effect of lithium, a nonspecific GSK-3β inhibitor, on TGF-β 1-induced fibroblast to myofibroblast transition (FMT) in HBF and found that the inhibition of GSK-3β attenuates TGF-β 1-induced FMT in HBF populations derived from asthmatic but not healthy donors. Cytoplasmically sequestrated β-catenin, abundant in TGF-β 1/LiCl-stimulated asthmatic HBFs, most likely interacts with and inhibits the nuclear accumulation and signal transduction of Smad proteins. These data indicate that the specific cellular context determines FMT-related responses of HBFs to factors interfering with the TGF-β signaling pathway. They may also provide a mechanistic explanation for epidemiological data revealing coincidental remission of asthmatic syndromes and their recurrence upon the discontinuation of lithium therapy in certain psychiatric diseases.
Journal of Biomedical Materials Research Part A | 2014
Magdalena Wytrwal; Paulina Koczurkiewicz; Kinga Wójcik; Marta Michalik; Bartłomiej Kozik; Marek Żylewski; Maria Nowakowska; Mariusz Kepczynski
Poly(allylamine hydrochloride) (PAH) has found many applications both in biotechnology and biomedical fields. However, its high toxicity toward various mammalian cells significantly limits its effective usage. This study focuses on improving the biological properties of PAH by its modification to strong polyelectrolytes. The strong polycations were prepared by the direct quaternization of PAH amino groups or by the attachment of glycidyltrimethylammonium chloride to these groups. The biological properties, such as cytotoxicity toward human skin fibroblasts (HSFs), proliferation and migration of the cells on a polymeric surface, and antibacterial activities against two pathogenic bacteria, Staphylococcus aureus and Escherichia coli, were determined. All the modified polyelectrolytes are considerably less toxic to HSFs as compared to PAH. Moreover, the directly quaternized polycations are stronger biocides against S. aureus than the parent polymer. Contrary to PAH, thin films of the modified polyelectrolytes improve or do not affect HSFs proliferation and can stimulate cell migration into the wound, as was demonstrated using an in vitro model. The relationship between the structure of the modified polymers (amount and localization of the quaternary ammonium groups) and the biological activity is discussed. Due to the improved biological properties, the obtained polycations may be potentially useful for a variety of biotechnological and biomedical applications.
Cellular & Molecular Biology Letters | 2011
Katarzyna Szpak; Ewa Wybieralska; Ewa Niedziałkowska; Monika Rak; Iga Bechyne; Marta Michalik; Zbigniew Madeja; Jarosław Czyż
The formation of aqueous intercellular channels mediating gap junctional intercellular coupling (GJIC) is a canonical function of connexins (Cx). In contrast, mechanisms of GJIC-independent involvement of connexins in cancer formation and metastasis remain a matter of debate. Because of the role of Cx43 in the determination of carcinoma cell invasive potential, we addressed the problem of the possible Cx43 involvement in early prostate cancer invasion. For this purpose, we analysed Cx43-positive DU-145 cell subsets established from the progenies of the cells most readily transmigrating microporous membranes. These progenies displayed motile activity similar to the control DU-145 cells but were characterized by elevated Cx43 expression levels and GJIC intensity. Thus, apparent links exist between Cx43 expression and transmigration potential of DU-145 cells. Moreover, Cx43 expression profiles in the analysed DU-145 subsets were not affected by intercellular contacts and chemical inhibition of GJIC during the transmigration. Our observations indicate that neither cell motility nor GJIC determines the transmigration efficiency of DU-145 cells. However, we postulate that selective transmigration of prostate cancer cells expressing elevated levels of Cx43 expression may be crucial for the “leading front” formation during cancer invasion.
PLOS ONE | 2015
Michal Sarna; Katarzyna Wójcik; Paweł Hermanowicz; Dawid Wnuk; Kvetoslava Burda; Marek Sanak; Jarosław Czyż; Marta Michalik
During asthma development, differentiation of epithelial cells and fibroblasts towards the contractile phenotype is associated with bronchial wall remodeling and airway constriction. Pathological fibroblast-to-myofibroblast transition (FMT) can be triggered by local inflammation of bronchial walls. Recently, we have demonstrated that human bronchial fibroblasts (HBFs) derived from asthmatic patients display some inherent features which facilitate their FMT in vitro. In spite of intensive research efforts, these properties remain unknown. Importantly, the role of undifferentiated HBFs in the asthmatic process was systematically omitted. Specifically, biomechanical properties of undifferentiated HBFs have not been considered in either FMT or airway remodeling in vivo. Here, we combine atomic force spectroscopy with fluorescence microscopy to compare mechanical properties and actin cytoskeleton architecture of HBFs derived from asthmatic patients and non-asthmatic donors. Our results demonstrate that asthmatic HBFs form thick and aligned ‘ventral’ stress fibers accompanied by enlarged focal adhesions. The differences in cytoskeleton architecture between asthmatic and non-asthmatic cells correlate with higher elastic modulus of asthmatic HBFs and their increased predilection to TGF-β-induced FMT. Due to the obvious links between cytoskeleton architecture and mechanical equilibrium, our observations indicate that HBFs derived from asthmatic bronchi can develop considerably higher static tension than non-asthmatic HBFs. This previously unexplored property of asthmatic HBFs may be potentially important for their myofibroblastic differentiation and bronchial wall remodeling during asthma development.