Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marta Motolese is active.

Publication


Featured researches published by Marta Motolese.


Journal of Neurochemistry | 2007

Expression of the Wnt inhibitor Dickkopf-1 is required for the induction of neural markers in mouse embryonic stem cells differentiating in response to retinoic acid.

R. Verani; I. Cappuccio; Paola Spinsanti; Roberto Gradini; Alessandra Caruso; M. C. Magnotti; Marta Motolese; Ferdinando Nicoletti; Daniela Melchiorri

Cultured mouse D3 embryonic stem (ES) cells differentiating into embryoid bodies (EBs) expressed several Wnt isoforms, nearly all isotypes of the Wnt receptor Frizzled and the Wnt/Dickkopf (Dkk) co‐receptor low‐density lipoprotein receptor‐related protein (LRP) type 5. A 4‐day treatment with retinoic acid (RA), which promoted neural differentiation of EBs, substantially increased the expression of the Wnt antagonist Dkk‐1, and induced the synthesis of the Wnt/Dkk‐1 co‐receptor LRP6. Recombinant Dkk‐1 applied to EBs behaved like RA in inducing the expression of the neural markers nestin and distal‐less homeobox gene (Dlx‐2). Recombinant Dkk‐1 was able to inhibit the Wnt pathway, as shown by a reduction in nuclear β‐catenin levels. Remarkably, the antisense‐ or small interfering RNA‐induced knockdown of Dkk‐1 largely reduced the expression of Dlx‐2, and the neuronal marker β‐III tubulin in EBs exposed to RA. These data suggest that induction of Dkk‐1 and the ensuing inhibition of the canonical Wnt pathway is required for neural differentiation of ES cells.


Journal of Neurochemistry | 2006

Inhibition of the canonical Wnt signaling pathway by apolipoprotein E4 in PC12 cells.

Alessandra Caruso; Marta Motolese; Luisa Iacovelli; Filippo Caraci; Agata Copani; Ferdinando Nicoletti; Georg C. Terstappen; Giovanni Gaviraghi; Andrea Caricasole

We examined the effect of the three human isoforms of apolipoprotein E (ApoE2, ApoE3, and ApoE4) on the canonical Wnt signaling pathway in undifferentiated PC12 cells. Addition of recombinant ApoE4 reduced Wingless‐Int7a‐stimulated gene expression at concentrations of 80 and 500 nm. Recombinant ApoE2 and ApoE3 were virtually inactive. Recombinant ApoE4 also inhibited Wnt signaling when combined with very low density lipoproteins (VLDLs) or in cells over‐expressing the low density lipoprotein receptor‐related protein, LRP6. In contrast, the enforced expression of LRP5 unmasked an inhibition by ApoE2 and ApoE3, which, however, were less effective than ApoE4 in inhibiting Wnt signaling. We also transfected PC12 cells with constructs encoding for the three human ApoE isoforms to examine whether endogenously expressed ApoE isoforms could modulate the Wnt pathway. Under these conditions, all three ApoE isoforms were able to inhibit Wnt signaling, although ApoE4 showed the greatest efficacy. Only the conditioned medium collected from cultures transfected with ApoE4 induced a significant inhibition of Wnt7a‐stimulated gene expression, confirming that ApoE4 has an extracellular action that is not shared by the other ApoE isoforms. We conclude that ApoE4 behaves as an inhibitor of the canonical Wnt pathway in a context‐independent manner.


The Journal of Neuroscience | 2014

Changes in mGlu5 receptor-dependent synaptic plasticity and coupling to homer proteins in the hippocampus of Ube3A hemizygous mice modeling angelman syndrome

Marco Pignatelli; Sonia Piccinin; Gemma Molinaro; Luisa Di Menna; Barbara Riozzi; Milena Cannella; Marta Motolese; Gisella Vetere; Maria Vincenza Catania; Giuseppe Battaglia; Ferdinando Nicoletti; Robert Nisticò; Valeria Bruno

Angelman syndrome (AS) is caused by the loss of Ube3A, an ubiquitin ligase that commits specific proteins to proteasomal degradation. How this defect causes autism and other pathological phenotypes associated with AS is unknown. Long-term depression (LTD) of excitatory synaptic transmission mediated by type 5 metabotropic glutamate (mGlu5) receptors was enhanced in hippocampal slices of Ube3Am−/p+ mice, which model AS. No changes were found in NMDA-dependent LTD induced by low-frequency stimulation. mGlu5 receptor-dependent LTD in AS mice was sensitive to the protein synthesis inhibitor anisomycin, and relied on the same signaling pathways as in wild-type mice, e.g., the mitogen-activated protein kinase (MAPK) pathway, the phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycine pathway, and protein tyrosine phosphatase. Neither the stimulation of MAPK and PI3K nor the increase in Arc (activity-regulated cytoskeleton-associated protein) levels in response to mGlu5 receptor activation were abnormal in hippocampal slices from AS mice compared with wild-type mice. mGlu5 receptor expression and mGlu1/5 receptor-mediated polyphosphoinositide hydrolysis were also unchanged in the hippocampus of AS mice. In contrast, AS mice showed a reduced expression of the short Homer protein isoform Homer 1a, and an increased coupling of mGlu5 receptors to Homer 1b/c proteins in the hippocampus. These findings support the link between Homer proteins and monogenic autism, and lay the groundwork for the use of mGlu5 receptor antagonists in AS.


Molecular Pharmacology | 2009

Regulation of group II metabotropic glutamate receptors by G protein-coupled receptor kinases: MGlu2 receptors are resistant to homologous desensitization

Luisa Iacovelli; Gemma Molinaro; G. Battaglia; Marta Motolese; L. Di Menna; M. Alfiero; J. Blahos; Francesco Matrisciano; M. Corsi; C. Corti; Valeria Bruno; A De Blasi; F. Nicoletti

We examined the regulation of mGlu2 and mGlu3 metabotropic glutamate receptor signaling prompted by the emerging role of these receptor subtypes as therapeutic targets for psychiatric disorders, such as anxiety and schizophrenia. In transfected human embryonic kidney 293 cells, G-protein-coupled receptor kinase (GRK) 2 and GRK3 fully desensitized the agonist-dependent inhibition of cAMP formation mediated by mGlu3 receptors. In contrast, GRK2 or other GRKs did not desensitize the cAMP response to mGlu2 receptor activation. Desensitization of mGlu3 receptors by GRK2 required an intact kinase activity, as shown by the use of the kinase-dead mutant GRK2-K220R or the recombinant GRK2 C-terminal domain. Overexpression of β-arrestin1 also desensitized mGlu3 receptors and did not affect the cAMP signaling mediated by mGlu2 receptors. The difference in the regulation of mGlu2 and mGlu3 receptors was signal-dependent because GRK2 desensitized the activation of the mitogen-activated protein kinase pathway mediated by both mGlu2 and mGlu3 receptors. In vivo studies confirmed the resistance of mGlu2 receptor-mediated cAMP signaling to homologous desensitization. Wild-type, mGlu2(-/-), or mGlu3(-/-) mice were treated intraperitoneally with saline or the mixed mGlu2/3 receptor agonist (-)-2-oxa-4-aminobicyclo[3.1.0]-exhane-4,6-dicarboxylic acid (LY379268; 1 mg/kg) once daily for 7 days. Inhibition of forskolin-stimulated cAMP formation by LY379268 was measured in cortical slices prepared 24 h after the last injection. Agonist pretreatment fully desensitized the cAMP response in wild-type and mGlu2(-/-) mice but had no effect in mGlu3(-/-) mice, in which LY379268 could only activate the mGlu2 receptor. We predict the lack of tolerance when mixed mGlu2/3 receptor agonists or selective mGlu2 enhancers are used continually in patients.


Brain Research | 2007

Nanomolar concentrations of anabolic-androgenic steroids amplify excitotoxic neuronal death in mixed mouse cortical cultures.

Rosamaria Orlando; Alessandra Caruso; Gemma Molinaro; Marta Motolese; Francesco Matrisciano; Giuseppina I. Togna; Daniela Melchiorri; Ferdinando Nicoletti; Valeria Bruno

The use of anabolic-androgenic steroids (AASs) in the world of sport has raised a major concern for the serious, sometimes life-threatening, side effects associated with these drugs. Most of the CNS effects are of psychiatric origin, and whether or not AASs are toxic to neurons is yet unknown. We compared the effect of testosterone with that of the AASs, 19-nortestosterone (nandrolone), stanozolol, and gestrinone, on excitotoxic neuronal death induced by N-methyl-d-aspartate (NMDA) in primary cultures of mouse cortical cells. In the most relevant experiments, steroids were applied to the cultures once daily during the 4 days preceding the NMDA pulse. Under these conditions, testosterone amplified excitotoxic neuronal death only at very high concentrations (10 muM), whereas it was protective at concentrations of 10 nM and inactive at intermediate concentrations. Low concentrations of testosterone became neurotoxic in the presence of the aromatase inhibitors, i.e. anastrozole and aminoglutethimide, suggesting that the intrinsic toxicity of testosterone was counterbalanced by its aromatization into 17beta-estradiol. As opposed to testosterone, nortestosterone, stanozolol and gestrinone amplified NMDA toxicity at nanomolar concentrations; their action was insensitive to aromatase inhibitors, but was abrogated by the androgen receptor antagonist, flutamide. None of the AASs were toxic in the absence of NMDA. These data suggest that AASs increase neuronal vulnerability to an excitotoxic insult and may therefore facilitate neuronal death associated with acute or chronic CNS disorders.


PLOS ONE | 2011

Induction of the Wnt antagonist Dickkopf-1 is involved in stress-induced hippocampal damage.

Francesco Matrisciano; Carla L. Busceti; Domenico Bucci; Rosamaria Orlando; Alessandra Caruso; Gemma Molinaro; Irene Cappuccio; Barbara Riozzi; Roberto Gradini; Marta Motolese; Filippo Caraci; Agata Copani; Sergio Scaccianoce; Daniela Melchiorri; Valeria Bruno; Giuseppe Battaglia; Ferdinando Nicoletti

The identification of mechanisms that mediate stress-induced hippocampal damage may shed new light into the pathophysiology of depressive disorders and provide new targets for therapeutic intervention. We focused on the secreted glycoprotein Dickkopf-1 (Dkk-1), an inhibitor of the canonical Wnt pathway, involved in neurodegeneration. Mice exposed to mild restraint stress showed increased hippocampal levels of Dkk-1 and reduced expression of β-catenin, an intracellular protein positively regulated by the canonical Wnt signalling pathway. In adrenalectomized mice, Dkk-1 was induced by corticosterone injection, but not by exposure to stress. Corticosterone also induced Dkk-1 in mouse organotypic hippocampal cultures and primary cultures of hippocampal neurons and, at least in the latter model, the action of corticosterone was reversed by the type-2 glucocorticoid receptor antagonist mifepristone. To examine whether induction of Dkk-1 was causally related to stress-induced hippocampal damage, we used doubleridge mice, which are characterized by a defective induction of Dkk-1. As compared to control mice, doubleridge mice showed a paradoxical increase in basal hippocampal Dkk-1 levels, but no Dkk-1 induction in response to stress. In contrast, stress reduced Dkk-1 levels in doubleridge mice. In control mice, chronic stress induced a reduction in hippocampal volume associated with neuronal loss and dendritic atrophy in the CA1 region, and a reduced neurogenesis in the dentate gyrus. Doubleridge mice were resistant to the detrimental effect of chronic stress and, instead, responded to stress with increases in dendritic arborisation and neurogenesis. Thus, the outcome of chronic stress was tightly related to changes in Dkk-1 expression in the hippocampus. These data indicate that induction of Dkk-1 is causally related to stress-induced hippocampal damage and provide the first evidence that Dkk-1 expression is regulated by corticosteroids in the central nervous system. Drugs that rescue the canonical Wnt pathway may attenuate hippocampal damage in major depression and other stress-related disorders.


Molecular Pain | 2012

N-Acetyl-cysteine causes analgesia by reinforcing the endogenous activation of type-2 metabotropic glutamate receptors

Matteo Bernabucci; Serena Notartomaso; Cristina Zappulla; Francesco Fazio; Milena Cannella; Marta Motolese; Giuseppe Battaglia; Valeria Bruno; Roberto Gradini; Ferdinando Nicoletti

BackgroundPharmacological activation of type-2 metabotropic glutamate receptors (mGlu2 receptors) causes analgesia in experimental models of inflammatory and neuropathic pain. Presynaptic mGlu2 receptors are activated by the glutamate released from astrocytes by means of the cystine/glutamate antiporter (System xc- or Sxc-). We examined the analgesic activity of the Sxc- activator, N-acetyl-cysteine (NAC), in mice developing inflammatory or neuropathic pain.ResultsA single injection of NAC (100 mg/kg, i.p.) reduced nocifensive behavior in the second phase of the formalin test. NAC-induced analgesia was abrogated by the Sxc- inhibitor, sulphasalazine (8 mg/kg, i.p.) or by the mGlu2/3 receptor antagonist, LY341495 (1 mg/kg, i.p.). NAC still caused analgesia in mGlu3−/− mice, but was inactive in mGlu2−/− mice. In wild-type mice, NAC retained the analgesic activity in the formalin test when injected daily for 7 days, indicating the lack of tolerance. Both single and repeated injections of NAC also caused analgesia in the complete Freund’s adjuvant (CFA) model of chronic inflammatory pain, and, again, analgesia was abolished by LY341495. Data obtained in mice developing neuropathic pain in response to chronic constriction injury (CCI) of the sciatic nerve were divergent. In this model, a single injection of NAC caused analgesia that was reversed by LY341495, whereas repeated injections of NAC were ineffective. Thus, tolerance to NAC-induced analgesia developed in the CCI model, but not in models of inflammatory pain. The CFA and CCI models differed with respect to the expression levels of xCT (the catalytic subunit of Sxc-) and activator of G-protein signaling type-3 (AGS3) in the dorsal portion of the lumbar spinal cord. CFA-treated mice showed no change in either protein, whereas CCI mice showed an ipislateral reduction in xCT levels and a bilateral increase in AGS3 levels in the spinal cord.ConclusionsThese data demonstrate that pharmacological activation of Sxc- causes analgesia by reinforcing the endogenous activation of mGlu2 receptors. NAC has an excellent profile of safety and tolerability when clinically used as a mucolytic agent or in the management of acetaminophen overdose. Thus, our data encourage the use of NAC for the experimental treatment of inflammatory pain in humans.


Current Neuropharmacology | 2013

Neurodevelopment in Schizophrenia: The Role of the Wnt Pathways

Isabella Panaccione; Flavia Napoletano; Alberto Forte; Giorgio D. Kotzalidis; Antonio Del Casale; Chiara Rapinesi; Chiara Brugnoli; Daniele Serata; Federica Caccia; Ilaria Cuomo; Elisa Ambrosi; Alessio Simonetti; Valeria Savoja; Lavinia De Chiara; Emanuela Danese; Giovanni Manfredi; Delfina Janiri; Marta Motolese; Ferdinando Nicoletti; Paolo Girardi; Gabriele Sani

Objectives. To review the role of Wnt pathways in the neurodevelopment of schizophrenia. Methods: Systematic PubMed search, using as keywords all the terms related to the Wnt pathways and crossing them with each of the following areas: normal neurodevelopment and physiology, neurodevelopmental theory of schizophrenia, schizophrenia, and antipsychotic drug action. Results: Neurodevelopmental, behavioural, genetic, and psychopharmacological data point to the possible involvement of Wnt systems, especially the canonical pathway, in the pathophysiology of schizophrenia and in the mechanism of antipsychotic drug action. The molecules most consistently found to be associated with abnormalities or in antipsychotic drug action are Akt1, glycogen synthase kinase3beta, and beta-catenin. However, the extent to which they contribute to the pathophysiology of schizophrenia or to antipsychotic action remains to be established. Conclusions: The study of the involvement of Wnt pathway abnormalities in schizophrenia may help in understanding this multifaceted clinical entity; the development of Wnt-related pharmacological targets must await the collection of more data.


Pharmacology Research & Perspectives | 2015

Antidepressant activity of fingolimod in mice.

Luigi di Nuzzo; Rosamaria Orlando; Cristina Tognoli; Paola Di Pietro; Giuseppe Bertini; Jessica Miele; Domenico Bucci; Marta Motolese; Sergio Scaccianoce; Alessandra Caruso; Gianluca Mauro; Carmine De Lucia; Giuseppe Battaglia; Valeria Bruno; Paolo F. Fabene; Ferdinando Nicoletti

Recent findings indicate that fingolimod, the first oral drug approved for the treatment of multiple sclerosis (MS), acts as a direct inhibitor of histone deacetylases (HDACs) and enhances the production of brain‐derived neurotrophic factor (BDNF) in the CNS. Both mechanisms are relevant to the pathophysiology and treatment of major depression. We examined the antidepressant activity of fingolimod in mice subjected to chronic unpredictable stress (CUS), a model of reactive depression endowed with face and pharmacological validity. Chronic treatment with fingolimod (3 mg kg−1, i.p., once a day for 4 weeks) reduced the immobility time in the forced swim test (FST) in a large proportion of CUS mice. This treatment also caused anxiogenic‐like effects in the social interaction test without affecting anxiety‐like behavior in the elevated plus maze or spatial learning in the water maze. CUS mice showed reduced BDNF levels and enhanced HDAC2 levels in the hippocampus. These changes were reversed by fingolimod exclusively in mice that showed a behavioral response to the drug in the FST. Fingolimod treatment also enhanced H3 histone K14‐acetylation and adult neurogenesis in the hippocampus of CUS mice. Fingolimod did not affect most of the parameters we have tested in unstressed control mice. The antidepressant‐like activity of fingolimod was confirmed in mice chronically treated with corticosterone. These findings show for the first time that fingolimod exerts antidepressant‐like effect acting in a “disease‐dependent” manner, and raise the interesting possibility that the drug could relieve depressive symptoms in MS patients independently of its disease‐modifying effect on MS.


Molecular Brain | 2015

Targeting type-2 metabotropic glutamate receptors to protect vulnerable hippocampal neurons against ischemic damage

Marta Motolese; Federica Mastroiacovo; Milena Cannella; Domenico Bucci; Anderson Gaglione; Barbara Riozzi; Robert Johannes Lütjens; Sonia Maria Poli; Sylvain Celanire; Valeria Bruno; Giuseppe Battaglia; Ferdinando Nicoletti

BackgroundTo examine whether metabotropic glutamate (mGlu) receptors have any role in mechanisms that shape neuronal vulnerability to ischemic damage, we used the 4-vessel occlusion (4-VO) model of transient global ischemia in rats. 4-VO in rats causes a selective death of pyramidal neurons in the hippocampal CA1 region, leaving neurons of the CA3 region relatively spared. We wondered whether changes in the expression of individual mGlu receptor subtypes selectively occur in the vulnerable CA1 region during the development of ischemic damage, and whether post-ischemic treatment with drugs targeting the selected receptor(s) affords neuroprotection.ResultsWe found that 4-VO caused significantly reduction in the transcript of mGlu2 receptors in the CA1 region at times that preceded the anatomical evidence of neuronal death. Down-regulation of mGlu2 receptors was associated with reduced H3 histone acetylation at the Grm2 promoter. The transcripts of other mGlu receptor subtypes were unchanged in the CA1 region of 4-VO rats. Ischemia did not cause changes in mGlu2 receptor mRNA levels in the resistant CA3 region, which, interestingly, were lower than in the CA1 region. Targeting the mGlu2 receptors with selective pharmacologic ligands had profound effects on ishemic neuronal damage. Post-ischemic oral treatment with the selective mGlu2 receptor NAM (negative allosteric modulator), ADX92639 (30 mg/kg), was highly protective against ischemic neuronal death. In contrast, s.c. administration of the mGlu2 receptor enhancer, LY487379 (30 mg/kg), amplified neuronal damage in the CA1 region and extended the damage to the CA3 region.ConclusionThese findings suggest that the mGlu2 receptor is an important player in mechanisms regulating neuronal vulnerability to ischemic damage, and that mGlu2 receptor NAMs are potential candidates in the experimental treatments of disorders characterized by brain hypoperfusion, such as hypovolemic shock and cardiac arrest.

Collaboration


Dive into the Marta Motolese's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Valeria Bruno

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alessandra Caruso

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roberto Gradini

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rosamaria Orlando

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Daniela Melchiorri

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge