Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marta Murgia is active.

Publication


Featured researches published by Marta Murgia.


Current Biology | 1995

Chimeric green fluorescent protein as a tool for visualizing subcellular organelles in living cells

Rosario Rizzuto; Marisa Brini; Paola Pizzo; Marta Murgia; Tullio Pozzan

BACKGROUND It has recently been demonstrated that the green fluorescent protein (GFP) of the jellyfish Aequorea victoria retains its fluorescent properties when recombinantly expressed in both prokaryotic (Escherichia coli) and eukaryotic (Caenorhabditis elegans and Drosophila melanogaster) living cells; it can therefore be used as a powerful marker of gene expression in vivo. The specific targeting of recombinant GFP within cells would allow it to be used for even more applications, but no information is yet available on the possibility of targeting GFP to intracellular organelles. RESULTS In this study, we show that the GFP cDNA can be expressed at high levels in cultured mammalian cells; the recombinant polypeptide is highly fluorescent and is exclusively localized in the cytosol. Furthermore, we have modified the GFP cDNA to include a mitochondrial targeting sequence (and a strong immunological epitope at the amino terminus of the encoded polypeptide). When transiently transfected into mammalian cells, this construct drives the expression of a strongly fluorescent GFP chimera which selectively localizes to the mitochondria. We also describe two of the many possible applications of this recombinant GFP in physiological studies. The targeted chimera allows the visualization of mitochondrial movement in living cells. Also, unlike dyes such as rhodamine, it reveals morphological changes induced in mitochondria by drugs that collapse the organelle membrane potential. Moreover, when GFP is cotransfected with a membrane receptor, such as the alpha 1-adrenergic receptor, the fluorescence of the GFP in intact cells can be used in recognizing the transfected cells. Thus, specific changes in intracellular Ca2+ concentration that occur in cells expressing the recombinant receptor can be identified using a classical fluorescent Ca2+ indicator. CONCLUSION GFP is an invaluable new tool for studies of molecular biology and cell physiology. As a marker of transfection in vivo, it provides a simple means of identifying genetically modified cells to be used in physiological studies. More importantly, chimeric GFP, which in principle can be targeted to any subcellular location, can be used to monitor complex phenomena in intact living cells, such as changes in shape and distribution of organelles, and it has the potential to be used as a probe of physiological parameters.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Calcineurin controls nerve activity-dependent specification of slow skeletal muscle fibers but not muscle growth

Antonio Serrano; Marta Murgia; Giorgia Pallafacchina; Elisa Calabria; Patrizia Coniglio; Terje Lømo; Stefano Schiaffino

Nerve activity can induce long-lasting, transcription-dependent changes in skeletal muscle fibers and thus affect muscle growth and fiber-type specificity. Calcineurin signaling has been implicated in the transcriptional regulation of slow muscle fiber genes in culture, but the functional role of calcineurin in vivo has not been unambiguously demonstrated. Here, we report that the up-regulation of slow myosin heavy chain (MyHC) and a MyHC-slow promoter induced by slow motor neurons in regenerating rat soleus muscle is prevented by the calcineurin inhibitors cyclosporin A (CsA), FK506, and the calcineurin inhibitory protein domain from cain/cabin-1. In contrast, calcineurin inhibitors do not block the increase in fiber size induced by nerve activity in regenerating muscle. The activation of MyHC-slow induced by direct electrostimulation of denervated regenerating muscle with a continuous low frequency impulse pattern is blocked by CsA, showing that calcineurin function in muscle fibers and not in motor neurons is responsible for nerve-dependent specification of slow muscle fibers. Calcineurin is also involved in the maintenance of the slow muscle fiber gene program because in the adult soleus muscle, cain causes a switch from MyHC-slow to fast-type MyHC-2X and MyHC-2B gene expression, and the activity of the MyHC-slow promoter is inhibited by CsA and FK506.


Nature Cell Biology | 2000

Ras is involved in nerve-activity-dependent regulation of muscle genes

Marta Murgia; Antonio Serrano; Elisa Calabria; Giorgia Pallafacchina; Terje Lømo; Stefano Schiaffino

Gene expression in skeletal muscle is regulated by the firing pattern of motor neurons, but the signalling systems involved in excitation–transcription coupling are unknown. Here, using in vivo transfection in regenerating muscle, we show that constitutively active Ras and a Ras mutant that selectively activates the MAPK(ERK) pathway are able to mimic the effects of slow motor neurons on expression of myosin genes. Conversely, the effect of slow motor neurons is inhibited by a dominant-negative Ras mutant. MAPK(ERK) activity is increased by innervation and by low-frequency electrical stimulation. These results indicate that Ras–MAPK signalling is involved in promoting nerve-activity-dependent differentiation of slow muscle fibres in vivo.


The EMBO Journal | 1993

Nuclear Ca2+ concentration measured with specifically targeted recombinant aequorin.

Marisa Brini; Marta Murgia; Lucia Pasti; D Picard; Tullio Pozzan; Rosario Rizzuto

Activation of nuclear transcription factors, breakdown of nuclear envelope and apoptosis represent a group of nuclear events thought to be modulated by changes in nucleoplasmic Ca2+ concentration, [Ca2+]n. Direct evidence for, or against, this possibility has been, however, difficult to obtain because measurements of [Ca2+]n are hampered by major technical problems. Here we describe a new approach for selectively monitoring Ca2+ concentrations inside the nucleus of living cells, which is based on the construction of a chimeric cDNA encoding a fusion protein composed of the photoprotein aequorin and a nuclear translocation signal derived from the rat glucocorticoid receptor. This modified aequorin (nuAEQ), stably expressed in HeLa cells, was largely confined to the nucleoplasm and thus utilized for monitoring [Ca2+]n in intact cells. No significant differences were observed between [Ca2+]n and cytosolic Ca2+ concentration ([Ca2+]i) under resting conditions. Upon stimulation of surface receptors linked to inositol‐1,4,5‐trisphosphate (InsP3) generation, and thus to intracellular Ca2+ signalling, the kinetics of [Ca2+]i and [Ca2+]n increases were indistinguishable. However, for the same rise in [Ca2+]i, the amplitude of [Ca2+]n increase was larger when evoked by Ca2+ mobilization from internal stores than when induced by Ca2+ influx across the plasma membrane. The functional significance of these transient nucleus‐cytosol Ca2+ gradients is discussed.


The EMBO Journal | 1997

Domains of high Ca2+ beneath the plasma membrane of living A7r5 cells.

Robert Marsault; Marta Murgia; Tullio Pozzan; Rosario Rizzuto

Theoretical models and indirect experimental observations predict that Ca2+ concentrations at the inner surface of the plasma membrane may reach, upon stimulation, values much higher than those of the bulk cytosol. In the past few years, we have shown that the Ca2+‐sensitive photoprotein aequorin can be intracellularly targeted and utilized for specifically monitoring the [Ca2+] of various organelles. In this work, we extend this approach to the study of the cytoplasmic rim beneath the plasma membrane. We have constructed a new aequorin chimera by fusing the photoprotein with SNAP‐25, a neuronal protein which is recruited to the plasma membrane after the post‐translational addition of a lipid anchor. The SNAP‐25–aequorin chimera, expressed in the rat aortic smooth muscle cell line A7r5, appears correctly sorted as revealed by immunocytochemistry. Using this probe, we demonstrate that the mean [Ca2+] of this cytoplasmic region ([Ca2+]pm) can reach values >10‐fold higher than those of the bulk cytosol ([Ca2+]c) upon activation of Ca2+ influx through plasma membrane channels. In unstimulated cells, the mean [Ca2+]pm appears also to be higher than the bulk cytosol, presumably reflecting the existence of microdomains of high [Ca2+].


Proceedings of the National Academy of Sciences of the United States of America | 2009

NFAT isoforms control activity-dependent muscle fiber type specification

Elisa Calabria; Stefano Ciciliot; Irene Moretti; Marta Garcia; Anne Picard; Kenneth A. Dyar; Giorgia Pallafacchina; Jana Tothova; Stefano Schiaffino; Marta Murgia

The intracellular signals that convert fast and slow motor neuron activity into muscle fiber type specific transcriptional programs have only been partially defined. The calcium/calmodulin-dependent phosphatase calcineurin (Cn) has been shown to mediate the transcriptional effects of motor neuron activity, but precisely how 4 distinct muscle fiber types are composed and maintained in response to activity is largely unknown. Here, we show that 4 nuclear factor of activated T cell (NFAT) family members act coordinately downstream of Cn in the specification of muscle fiber types. We analyzed the role of NFAT family members in vivo by transient transfection in skeletal muscle using a loss-of-function approach by RNAi. Our results show that, depending on the applied activity pattern, different combinations of NFAT family members translocate to the nucleus contributing to the transcription of fiber type specific genes. We provide evidence that the transcription of slow and fast myosin heavy chain (MyHC) genes uses different combinations of NFAT family members, ranging from MyHC-slow, which uses all 4 NFAT isoforms, to MyHC-2B, which only uses NFATc4. Our data contribute to the elucidation of the mechanisms whereby activity can modulate the phenotype and performance of skeletal muscle.


Journal of Molecular and Cellular Cardiology | 2009

Controlling metabolism and cell death: At the heart of mitochondrial calcium signalling

Marta Murgia; Carlotta Giorgi; Paolo Pinton; Rosario Rizzuto

Transient increases in intracellular calcium concentration activate and coordinate a wide variety of cellular processes in virtually every cell type. This review describes the main homeostatic mechanisms that control Ca(2+) transients, focusing on the mitochondrial checkpoint. We subsequently extend this paradigm to the cardiomyocyte and to the interplay between cytosol, endoplasmic reticulum and mitochondria that occurs beat-to-beat in excitation-contraction coupling. The mechanisms whereby mitochondria decode fast cytosolic calcium spikes are discussed in the light of the results obtained with recombinant photoproteins targeted to the mitochondrial matrix of contracting cardiomyocytes. Mitochondrial calcium homeostasis is then highlighted as a crucial point of convergence of the environmental signals that mediate cardiac cell death, both by necrosis and by apoptosis. Altogether we point to a role of the mitochondrion as an integrator of calcium signalling and a fundamental decision maker in cardiomyocyte metabolism and survival.


Molecular and Cellular Biology | 2006

Furin-, ADAM 10-, and gamma-secretase-mediated cleavage of a receptor tyrosine phosphatase and regulation of beta-catenin's transcriptional activity.

Lars Anders; Philipp Mertins; Sven Lammich; Marta Murgia; Dieter Hartmann; Paul Saftig; Christian Haass; Axel Ullrich

ABSTRACT Several receptor protein tyrosine phosphatases (RPTPs) are cell adhesion molecules involved in homophilic interactions, suggesting that RPTP outside-in signaling is coupled to cell contact formation. However, little is known about the mechanisms by which cell density regulates RPTP function. We show that the MAM family prototype RPTPκ is cleaved by three proteases: furin, ADAM 10, and γ-secretase. Cell density promotes ADAM 10-mediated cleavage and shedding of RPTPκ. This is followed by γ-secretase-dependent intramembrane proteolysis of the remaining transmembrane part to release the phosphatase intracellular portion (PIC) from the membrane, thereby allowing its translocation to the nucleus. When cells were treated with leptomycin B, a nuclear export inhibitor, PIC accumulated in nuclear bodies. PIC is an active protein tyrosine phosphatase that binds to and dephosphorylates β-catenin, an RPTPκ substrate. The expression of RPTPκ suppresses β-catenins transcriptional activity, whereas the expression of PIC increases it. Notably, this increase required the phosphatase activity of PIC. Thus, both isoforms have acquired opposing roles in the regulation of β-catenin signaling. We also found that RPTPμ, another MAM family member, undergoes γ-secretase-dependent processing. Our results identify intramembrane proteolysis as a regulatory switch in RPTPκ signaling and implicate PIC in the activation of β-catenin-mediated transcription.


Molecular & Cellular Proteomics | 2015

Deep Proteomics of Mouse Skeletal Muscle Enables Quantitation of Protein Isoforms, Metabolic Pathways, and Transcription Factors

Atul S. Deshmukh; Marta Murgia; Nagarjuna Nagaraj; Jonas T. Treebak; Jürgen Cox; Matthias Mann

Skeletal muscle constitutes 40% of individual body mass and plays vital roles in locomotion and whole-body metabolism. Proteomics of skeletal muscle is challenging because of highly abundant contractile proteins that interfere with detection of regulatory proteins. Using a state-of-the art MS workflow and a strategy to map identifications from the C2C12 cell line model to tissues, we identified a total of 10,218 proteins, including skeletal muscle specific transcription factors like myod1 and myogenin and circadian clock proteins. We obtain absolute abundances for proteins expressed in a muscle cell line and skeletal muscle, which should serve as a valuable resource. Quantitation of protein isoforms of glucose uptake signaling pathways and in glucose and lipid metabolic pathways provides a detailed metabolic map of the cell line compared with tissue. This revealed unexpectedly complex regulation of AMP-activated protein kinase and insulin signaling in muscle tissue at the level of enzyme isoforms.


International Journal of Cancer | 2005

Anti-HER-3 MAbs inhibit HER-3-mediated signaling in breast cancer cell lines resistant to anti-HER-2 antibodies

Edward H. van der Horst; Marta Murgia; Martin Treder; Axel Ullrich

Two members of the EGF receptor family, HER2 and HER3, act as key oncogenes in breast cancer cells. A MAb against HER2, trastuzumab, interferes with HER2 signaling and istherapeutically effective in humans. Here, we explored the biologic effects of an antibody against HER3 (α‐HER3ECD) in the invasive breast cancer cell lines MCF‐7ADR and MDA‐MB‐468. Pretreating the breast cancer cells with α‐HER3ECD prior to Heregulin stimulation caused significant reduction of the migratory and proliferative properties. This reduction is due to a substantial decrease in the tyrosine phosphorylation content of HER2 and to a modification of the HER2/HER3 association, which ultimately inhibits the activity of the downstream effectors phosphatidyinositol‐3‐OH‐kinase and c‐jun‐terminal kinase. Furthermore, HER3 is internalized and not activated by HRG after pretreatment with α‐HER3ECD. Our data reinforce the notion that HER3 could be a key target in cancer drug design and show the great potential of anti‐HER3 antibodies for the therapy of breast cancer and other malignancies characterized by overexpression of HER3.

Collaboration


Dive into the Marta Murgia's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge