Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marta Pegueroles is active.

Publication


Featured researches published by Marta Pegueroles.


Acta Biomaterialia | 2010

Spatial organization of osteoblast fibronectin matrix on titanium surfaces: Effects of roughness, chemical heterogeneity and surface energy

Marta Pegueroles; Conrado Aparicio; M. Bosio; Elisabeth Engel; F. J. Gil; J. A. Planell; G. Altankov

We investigated the early events of bone matrix formation, and specifically the role of fibronectin (FN) in the initial osteoblast interaction and the subsequent organization of a provisional FN matrix on different rough titanium (Ti) surfaces. Fluorescein isothiocyanate-labelled FN was preadsorbed on these surfaces and studied for its three-dimensional (3-D) organization by confocal microscopy, while its amount was quantified after NaOH extraction. An irregular pattern of adsorption with a higher amount of protein on topographic peaks than on valleys was observed and attributed to the physicochemical heterogeneity of the rough Ti surfaces. MG63 osteoblast-like cells were further cultured on FN-preadsorbed Ti surfaces and an improved initial cellular interaction was observed with increasing roughness. 3-D reconstruction of the immunofluorescence images after 4 days of incubation revealed that osteoblasts deposit FN fibrils in a specific facet-like pattern that is organized within the secreted total matrix overlying the top of the samples. The thickness of this FN layer increased when the roughness of the underlying topography was increased, but not by more than half of the total maximum peak-to-valley distance, as demonstrated with images showing simultaneous reconstruction of fluorescence and topography after 7 days of cell culture.


Colloids and Surfaces B: Biointerfaces | 2015

Biofunctionalization of REDV elastin-like recombinamers improves endothelialization on CoCr alloy surfaces for cardiovascular applications

Maria Isabel Castellanos; Anne-Sophie Zenses; Anna Grau; José Carlos Rodríguez-Cabello; F.J. Gil; J. M. Manero; Marta Pegueroles

To improve cardiovascular implant success, metal-based stents are designated to modulate endothelial cells adhesion and migration in order to prevent restenosis and late thrombosis diseases. Biomimetic coatings with extra-cellular matrix adhesive biomolecules onto stents surfaces are a strategy to recover a healthy endothelium. However, the appropriate bioactive sequences to selective promote growth of endothelium and the biomolecules surface immobilization strategy remains to be elucidated. In this study, biofunctionalization of cobalt chromium, CoCr, alloy surfaces with elastin-like recombinamers, ELR, genetically modified with an REDV sequence, was performed to enhance metal surfaces endothelialization. Moreover, physical adsorption and covalent bonding were used as biomolecules binding strategies onto CoCr alloy. Surfaces were activated with plasma and etched with sodium hydroxide previous to silanization with 3-chloropropyltriethoxysilane and functionalized with the ELR. CoCr alloy surfaces were successfully biofunctionalized and the use of an ELR with an REDV sequence, allows conferring bioactivity to the biomaterials surface, demonstrating a higher cell adhesion and spreading of HUVEC cells on the different CoCr surfaces. This effect is emphasized as increases the amount of immobilized biomolecules and directly related to the immobilization technique, covalent bonding, and the increase of surface charge electronegativity. Our strategy of REDV elastin-like recombinamers immobilization onto CoCr alloy surfaces via covalent bonding through organosilanes provides a bioactive surface that promotes endothelial cell adhesion and spreading.


ACS Applied Materials & Interfaces | 2016

Tuning Mesenchymal Stem Cell Response onto Titanium-Niobium-Hafnium Alloy by Recombinant Fibronectin Fragments.

C. Herranz-Diez; Carlos Mas-Moruno; Stefanie Neubauer; Horst Kessler; F. J. Gil; Marta Pegueroles; J. M. Manero; Jordi Guillem-Marti

Since metallic biomaterials used for bone replacement possess low bioactivity, the use of cell adhesive moieties is a common strategy to improve cellular response onto these surfaces. In recent years, the use of recombinant proteins has emerged as an alternative to native proteins and short peptides owing to the fact that they retain the biological potency of native proteins, while improving their stability. In the present study, we investigated the biological effect of two different recombinant fragments of fibronectin, spanning the 8-10th and 12-14th type III repeats, covalently attached to a new TiNbHf alloy using APTES silanization. The fragments were studied separately and mixed at different concentrations and compared to a linear RGD, a cyclic RGD and the full-length fibronectin protein. Cell culture studies using rat mesenchymal stem cells demonstrated that low to medium concentrations (30% and 50%) of type III 8-10th fragment mixed with type III 12-14th fragment stimulated cell spreading and proliferation compared to RGD peptides and the fragments separately. On the other hand, type III 12-14th fragment alone or mixed at low volume percentages ≤50% with type III 8-10th fragment increased alkaline phosphatase levels compared to the other molecules. These results are significant for the understanding of the role of fibronectin recombinant fragments in cell responses and thus to design bioactive coatings for biomedical applications.


Journal of Medical Devices-transactions of The Asme | 2009

Biomimetic treatments on dental implants for immediate loading applications

Conrado Aparicio; Emiliano Salvagni; M. Werner; Elisabeth Engel; Marta Pegueroles; C. Rodriguez-Cabello; Fernando Muñoz; J. A. Planell; Javier Gil

Commercially pure titanium (cp Ti) dental implants have been widely and successfully used with high rates of clinical success in normal situations. However, there is still a lack of reliable synthetic materials to be used either a) when immediate loading of the implant is desired or b) when bone presents compromised conditions due to trauma, infection, systemic disease and/or lack of significant bone volume. Our group has aimed the development of biomimetic strategies of surface modification to obtain metallic implants with osteostimulative capabilities. These surface modifications will provide implants with a rapid rate of newly-formed bone growth and with ossecoalescence, i.e., direct chemical contact with the surrounding tissues. Consequently, the biomimetically-modified implants will be reliably used on those more demanding clinical situations, cp Ti surfaces treated to obtain a combination of an optimal random surface topography (in the micro and nanolevels) with a chemical modification of the naturally-formed titania layer have been proved bioactive. These rough and bioactive surfaces nucleate and grow a homogeneous hydroxyapatite layer both in vitro and in vivo. They stimulate the osteoblasts differentiation and trigger a rapid bone formation that mechanically fixes implants under immediate-loading conditions. A simple process using silane chemistry has been proved specific, rapid, and reliable to covalently immobilize biomolecules on cp Ti surfaces. This methodology can be used to develop biofunc- tionalized implant surfaces with different or combined bioactivities. The biofunctional molecules can be biopolymers, proteins, growth factors, and synthetic peptides specifically designed to be attached to the surface. The bioactive properties of the molecules designed and used can be mineral growing and nucleation, osteoblast differentiation (bone regeneration), fibroblasts differentiation (biological sealing), antibiotic,... Specifically, we have obtained mechanically and thermochemically stable coatings made of recombinant elastin-like biopolymers. The biopolymers bear either a) the RODS peptide, which is a highly-specific cell-adhesion motif present in proteins of the extracellular matrix for different tissues including bone, or b) an acidic peptide sequence derived from statherin, a protein present in saliva with high affinity for calcium-phosphates and with a leading role in the remineralization processes of the hard tissues forming our teeth. Two different biomimetic strategies have been successfully developed combining topographical modification, inorganic treatments and/or biofunctionalization for improving bioactive integrative properties of cp Ti implants.


Tissue Engineering Part C-methods | 2016

Customized Interface Biofunctionalization of Decellularized Extracellular Matrix: Toward Enhanced Endothelialization.

Hug Aubin; Carlos Mas-Moruno; Makoto Iijima; Nicolas Schütterle; Meike Steinbrink; Alexander Assmann; Francesc Javier Gil; Artur Lichtenberg; Marta Pegueroles; Payam Akhyari

Interface biofunctionalization strategies try to enhance and control the interaction between implants and host organism. Decellularized extracellular matrix (dECM) is widely used as a platform for bioengineering of medical implants, having shown its suitability in a variety of preclinical as well as clinical models. In this study, specifically designed, custom-made synthetic peptides were used to functionalize dECM with different cell adhesive sequences (RGD, REDV, and YIGSR). Effects on in vitro endothelial cell adhesion and in vivo endothelialization were evaluated in standardized models using decellularized ovine pulmonary heart valve cusps (dPVCs) and decellularized aortic grafts (dAoGs), respectively. Contact angle measurements and fluorescent labeling of custom-made peptides showed successful functionalization of dPVCs and dAoGs. The functionalization of dPVCs with a combination of bioactive sequences significantly increased in vitro human umbilical vein endothelial cell adhesion compared to nonfunctionalized controls. In a functional rodent aortic transplantation model, fluorescent-labeled peptides on dAoGs were persistent up to 10 days in vivo under exposure to systemic circulation. Although there was a trend toward enhanced in vivo endothelialization of functionalized grafts compared to nonfunctionalized controls, there was no statistical significance and a large biological variability in both groups. Despite failing to show a clear biological effect in the used in vivo model system, our initial findings do suggest that endothelialization onto dECM may be modulated by customized interface biofunctionalization using the presented method. Since bioactive sequences within the dECM-synthetic peptide platform are easily interchangeable and combinable, further control of host cell proliferation, function, and differentiation seems to be feasible, possibly paving the way to a new generation of multifunctional dECM scaffolds for regenerative medicine.


Journal of Oral Implantology | 2016

Importance of the Roughness and Residual Stresses of Dental Implants on Fatigue and Osseointegration Behavior. In Vivo Study in Rabbits

Eugenio Velasco; Loreto Monsalve-Guil; A Álvaro Iván Jiménez; Iván Ortiz; Jesús Moreno-Muñoz; Enrique Nuñez-Marquez; Marta Pegueroles; Roman A. Perez; F.J. Gil

This study focuses on the fatigue behavior and bone-implant attachment for the more usual surfaces of the different CP-titanium dental implants. The implants studied were: as-received (CTR), acid etching (AE), spark-anodization (SA), and with a grit-blasted surface (GB). Residual stresses were determined by means of X-ray diffraction. The fatigue tests were carried out at 37°C on 160 dental implants, and the stress-failure (S-N) curve was determined. The fatigue tests showed that the grit-blasting process improved fatigue life. This is a consequence of the layer of compressive residual stresses that the treatment generates in titanium surfaces. Further, our aim was to assess and compare the short- and midterm bone regenerative potential and mechanical retention of the implants in bone of New Zealand rabbits. The mechanical retention after 4 and 10 weeks of implantation was evaluated with histometric and pull-out tests, respectively, as a measure of the osseointegration of the implants. The results demonstrated that the GB treatment produced microrough that accelerated bone tissue regeneration and increased mechanical retention in the bone bed at short periods of implantation in comparison with all other implants tested. The GB surface produced an improvement in mechanical long-time behavior and improved bone growth. These types of treated implants can have great potential in clinical applications, as evidenced by the outcomes of the current study.


Archive | 2010

Development of provisional extracellular matrix on biomaterials interface: Lessons from in vitro cell culture

George Altankov; Thomas Groth; Elisabeth Engel; Jonas Gustavsson; Marta Pegueroles; Conrado Aparicio; Francesc Javier Gil; Maria-Pau Ginebra; Josep A. Planell

The initial cellular events that take place at the biomaterials interface mimic to a certain extent the natural interaction of cells with the extracellular matrix (ECM). The cells adhering to the adsorbed soluble matrix proteins, such as fibronectin (FN) and fibrinogen (FNG) tend to re-arrange them in fibril-like pattern. Using model surfaces we have demonstrated that this cellular activity is abundantly dependent on the surface properties of materials, such as wettability, surface chemistry, charge and topography. This raises the possibility that tissue compatibility of materials is connected with the allowance of cells to remodel substratum associated proteins presumably to form provisional ECM. We have further shown that antibodies which bind β1 and αv integrins (subunits of the FN and FNG receptors respectively) may induce their linear rearrangement on the dorsal surface of living cells – a phenomenon presumably related to the same early molecular events of fibrillar matrix assembly. Because the quantitative measurements revealed that this receptor dynamics is strongly altered on the low compatible (hydrophobic) substrata we hypothesized that in order to be biocompatible, materials need to adsorb matrix proteins loosely, i.e. in such a way that the cells can easily remove and organize them in matrix-like fibrils via coordinated functioning of integrins. More recent studies on the fate of FN on some real biomaterial surfaces, including different rough titanium (Ti) and hydroxyapatite (HA) cements and the surface of biosensors confirmed this point of view. They also show that quantitative measurements of adsorbed matrix proteins and their dynamic rearrangement at cell-material interface might provide insight to the biocompatibility of given material and even predict its tissue integration.


Journal of Biomedical Materials Research Part A | 2017

Cell adhesive peptides functionalized on CoCr alloy stimulate endothelialization and prevent thrombogenesis and restenosis

Maria Isabel Castellanos; Jordi Guillem-Marti; Carlos Mas-Moruno; Maribel Diaz-Ricart; Gines Escolar; Maria-Pau Ginebra; F.J. Gil; Marta Pegueroles; J. M. Manero

Immobilization of bioactive peptide sequences on CoCr surfaces is an effective route to improve endothelialization, which is of great interest for cardiovascular stents. In this work, we explored the effect of physical and covalent immoblization of RGDS, YIGSR and their equimolar combination peptides on endothelial cells (EC) and smooth muscle cell (SMC) adhesion and on thrombogenicity. We extensively investigated using RT-qPCR, the expression by ECs cultured on functionalised CoCr surfaces of different genes. Genes relevant for adhesion (ICAM-1 and VCAM-1), vascularization (VEGFA, VEGFR-1 and VEGFR-2) and anti-thrombogenicity (tPA and eNOS) were over-expressed in the ECs grown to covalently functionalized CoCr surfaces compared to physisorbed and control surfaces. Pro-thrombogenic genes expression (PAI-1 and vWF) decreased over time. Cell co-cultures of ECs/SMCs found that functionalization increased the amount of adhered ECs onto modified surfaces compared to plain CoCr, independently of the used peptide and the strategy of immobilization. SMCs adhered less compared to ECs in all surfaces. All studied peptides showed a lower platelet cell adhesion compared to TCPS. Covalent functionalization of CoCr surfaces with an equimolar combination of RGDS and YIGSR represented prevailing strategy to enhance the early stages of ECs adhesion and proliferation, while preventing SMCs and platelet adhesion.


Surface & Coatings Technology | 2008

The influence of blasting and sterilization on static and time-related wettability and surface-energy properties of titanium surfaces

Marta Pegueroles; F. J. Gil; J. A. Planell; Conrado Aparicio


Journal of Biomedical Materials Research Part A | 2007

Acceleration of apatite nucleation on microrough bioactive titanium for bone-replacing implants

Conrado Aparicio; J. M. Manero; F. Conde; Marta Pegueroles; J. A. Planell; María Vallet-Regí; F.J. Gil

Collaboration


Dive into the Marta Pegueroles's collaboration.

Top Co-Authors

Avatar

F.J. Gil

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. A. Planell

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar

F. J. Gil

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar

J. M. Manero

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar

Carlos Mas-Moruno

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar

Elisabeth Engel

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar

Maria-Pau Ginebra

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar

Jordi Guillem-Marti

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar

Maria Isabel Castellanos

Polytechnic University of Catalonia

View shared research outputs
Researchain Logo
Decentralizing Knowledge