Marta Puga
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marta Puga.
Proceedings of SPIE | 2011
J. M. Rodríguez-Ramos; J. P. Lüke; R. López; José Gil Marichal-Hernández; I. Montilla; J. M. Trujillo-Sevilla; Bruno Femenia; Marta Puga; M. López; J. J. Fernández-Valdivia; F. Rosa; C. Dominguez-Conde; J. C. Sanluis; Luis Fernando Rodríguez-Ramos
Plenoptic cameras have been developed over the last years as a passive method for 3d scanning. Several superresolution algorithms have been proposed in order to increase the resolution decrease associated with lightfield acquisition with a microlenses array. A number of multiview stereo algorithms have also been applied in order to extract depth information from plenoptic frames. Real time systems have been implemented using specialized hardware as Graphical Processing Units (GPUs) and Field Programmable Gates Arrays (FPGAs). In this paper, we will present our own implementations related with the aforementioned aspects but also two new developments consisting of a portable plenoptic objective to transform every conventional 2d camera in a 3D CAFADIS plenoptic camera, and the novel use of a plenoptic camera as a wavefront phase sensor for adaptive optics (OA). The terrestrial atmosphere degrades the telescope images due to the diffraction index changes associated with the turbulence. These changes require a high speed processing that justify the use of GPUs and FPGAs. Na artificial Laser Guide Stars (Na-LGS, 90km high) must be used to obtain the reference wavefront phase and the Optical Transfer Function of the system, but they are affected by defocus because of the finite distance to the telescope. Using the telescope as a plenoptic camera allows us to correct the defocus and to recover the wavefront phase tomographically. These advances significantly increase the versatility of the plenoptic camera, and provides a new contribution to relate the wave optics and computer vision fields, as many authors claim.
Monthly Notices of the Royal Astronomical Society | 2017
Carlos Colodro-Conde; S. Velasco; J. J. Fernández-Valdivia; Roberto López; Alejandro Oscoz; R. Rebolo; Bruno Femenia; David L. King; Lucas Labadie; Craig D. Mackay; Balaji Muthusubramanian; A. Pérez Garrido; Marta Puga; Gustavo Rodríguez-Coira; Luis Fernando Rodríguez-Ramos; J. M. Rodríguez-Ramos; R. Toledo-Moreo; I. Villó-Pérez
This work was supported by the Spanish Ministry of Economy under the projects AYA2011-29024, ESP2014-56869-C2-2-P, ESP2015-69020-C2-2-R and DPI2015-66458-C2-2-R, by project 15345/PI/10 from the Fundacion Seneca, by the Spanish Ministry of Education under the grant FPU12/05573, by project ST/K002368/1 from the Science and Technology Facilities Council and by ERDF funds from the European Commission. The results presented in this paper are based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. Special thanks go to Lara Monteagudo and Marcos Pellejero for their timely contributions.
Proceedings of SPIE | 2012
Luis Fernando Rodríguez-Ramos; I. Montilla; J. P. Lüke; R. López; José Gil Marichal-Hernández; J. M. Trujillo-Sevilla; Bruno Femenia; M. López; J. J. Fernández-Valdivia; Marta Puga; F. Rosa; J. M. Rodríguez-Ramos
Plenoptic cameras have been developed the last years as a passive method for 3d scanning, allowing focal stack capture from a single shot. But data recorded by this kind of sensors can also be used to extract the wavefront phases associated to the atmospheric turbulence in an astronomical observation. The terrestrial atmosphere degrades the telescope images due to the diffraction index changes associated to the turbulence. Na artificial Laser Guide Stars (Na-LGS, 90km high) must be used to obtain the reference wavefront phase and the Optical Transfer Function of the system, but they are affected by defocus because of the finite distance to the telescope. Using the telescope as a plenoptic camera allows us to correct the defocus and to recover the wavefront phase tomographically, taking advantage of the two principal characteristics of the plenoptic sensors at the same time: 3D scanning and wavefront sensing. Then, the plenoptic sensors can be studied and used as an alternative wavefront sensor for Adaptive Optics, particularly relevant when Extremely Large Telescopes projects are being undertaken. In this paper, we will present the first observational wavefront phases extracted from real astronomical observations, using punctual and extended objects, and we show that the restored wavefronts match the Kolmogorov atmospheric turbulence.
IEEE\/OSA Journal of Display Technology | 2015
I. Montilla; Marta Puga; J. P. Lüke; José Gil Marichal-Hernández; J. M. Rodríguez-Ramos
The plenoptic camera was originally created to allow the capture of the light field, a four-variable volume representation of all rays and their directions, which allows the creation by synthesis of an image of the observed object. This method has several advantages with regard to 3D capture systems based on stereo cameras since it does not need frame synchronization or geometric and color calibration. It also has many applications, from 3DTV to medical imaging. A plenoptic camera uses a microlens array to measure the radiance and direction of all the light rays in a scene. The array is placed at a distance from the principal lens, which is conjugated to the distance where the scene is situated, and the sensor is at the focal plane of the microlenses. We have designed a plenoptic objective that incorporates a microlens array and a relay system that reimages the microlens plane. This novel approach has proven successful. Placing it on a camera, the plenoptic objective creates a virtual microlens plane in front of the camera CCD, allowing it to capture the light field of the scene. In this paper we present the experimental results showing that depth information is perfectly captured when using an external plenoptic objective. Using this objective transforms any camera into a 3D sensor, opening up a wide range of applications from microscopy to astronomy .
Proceedings of SPIE | 2014
Craig D. Mackay; R. Rebolo; Jonathan Crass; David L. King; Lucas Labadie; Víctor González Escalera; Marta Puga; Antonio Pérez Garrido; Roberto López; Alejanrdo Oscoz; Jorge A. Pérez-Prieto; Luis Fernando Rodríguez-Ramos; S. Velasco; Isidro Villó
Lucky Imaging combined with a low order adaptive optics system has given the highest resolution images ever taken in the visible or near infrared of faint astronomical objects. This paper describes a new instrument that has already been deployed on the WHT 4.2m telescope on La Palma, with particular emphasis on the optical design and the predicted system performance. A new design of low order wavefront sensor using photon counting CCD detectors and multi-plane curvature wavefront sensor will allow virtually full sky coverage with faint natural guide stars. With a 2 x 2 array of 1024 x 1024 photon counting EMCCDs, AOLI is the first of the new class of high sensitivity, near diffraction limited imaging systems giving higher resolution in the visible from the ground than hitherto been possible from space.
Proceedings of SPIE | 2014
Marta Puga; Roberto López; David A. King; Alejandro Oscoz
AOLI, Adaptive Optics Lucky Imager, is the next generation of extremely high resolution instruments in the optical range, combining the two more promising techniques: Adaptive optics and lucky imaging. The possibility of reaching fainter objects at maximum resolution implies a better use of weak energy on each lucky image. AOLI aims to achieve this by using an adaptive optics system to reduce the dispersion that seeing causes on the spot and therefore increasing the number of optimal images to accumulate, maximizing the efficiency of the lucky imaging technique. The complexity of developments in hardware, control and software for in-site telescope tests claim for a system to simulate the telescope performance. This paper outlines the requirements and a concept/preliminary design for the William Herschel Telescope (WHT) and atmospheric turbulence simulator. The design consists of pupil resemble, a variable intensity point source, phase plates and a focal plane mask to assist in the alignment, diagnostics and calibration of AOLI wavefront sensor, AO loop and science detectors, as well as enabling stand-alone test operation of AOLI.
Proceedings of SPIE | 2016
Roberto López; S. Velasco; Carlos Colodro-Conde; Juan J. F. Valdivia; Marta Puga; Alejandro Oscoz; R. Rebolo; Craig D. Mackay; Antonio Pérez-Garrido; Luis Fernando Rodríguez-Ramos; J. M. Rodríguez-Ramos; David A. King; Lucas Labadie; Balaji Muthusubramanian; Gustavo Rodríguez-Coira
The Adaptive Optics Lucky Imager, AOLI, is an instrument developed to deliver the highest spatial resolution ever obtained in the visible, 20 mas, from ground-based telescopes. In AOLI a new philosophy of instrumental prototyping has been applied, based on the modularization of the subsystems. This modular concept offers maximum flexibility regarding the instrument, telescope or the addition of future developments.
euro-american workshop on information optics | 2011
J. M. Rodríguez-Ramos; José Gil Marichal-Hernández; J.P. Lüke; J. Trujillo-Sevilla; Marta Puga; M. López; J. J. Fernández-Valdivia; C. Dominguez-Conde; J. C. Sanluis; F. Rosa; V. Guadalupe; H. Quintero; C. Militello; Luis Fernando Rodríguez-Ramos; R. López; I. Montilla; B. Femenía
The CAFADIS camera project has consisted in building a camera to measure wave-front phases and distances under different scenarios (from microns to kilometres), using highly specialised electronic technology, namely Graphics Processing Units (GPUs) and Field Programmable Gate Arrays (FPGAs). It is a passive method of depth extraction, it uses incoherent light (natural light). In this paper we will present our new developments.
Proceedings of SPIE | 2016
Craig D. Mackay; R. Rebolo; David L. King; Lucas Labadie; Marta Puga; Antonio Pérez Garrido; Carlos Colodro-Conde; Roberto López; Balaji Muthusubramanian; Alejandro Oscoz; J. M. Rodríguez Ramos; Luis F. Rodrigo-Ramos; J. J. Fernández-Valdivia; S. Velasco
The combination of Lucky Imaging with a low order adaptive optics system was demonstrated very successfully on the Palomar 5m telescope nearly 10 years ago. It is still the only system to give such high-resolution images in the visible or near infrared on ground-based telescope of faint astronomical targets. The development of AOLI for deployment initially on the WHT 4.2 m telescope in La Palma, Canary Islands, will be described in this paper. In particular, we will look at the design and status of our low order curvature wavefront sensor which has been somewhat simplified to make it more efficient, ensuring coverage over much of the sky with natural guide stars as reference object. AOLI uses optically butted electron multiplying CCDs to give an imaging array of 2000 x 2000 pixels.
Proceedings of SPIE | 2016
M. Reyes Garcia-Talavera; Victor Javier Sánchez Béjar; José Carlos López; Roberto López; Carlos A. Martín; Y. Martín; I. Montilla; Miguel Núñez; Marta Puga; Luis Fernando Rodriguez; Fabio Tenegi; Óscar Tubío; D. Bello; L. Cavaller; G. Prieto; M. Rosado
Since the beginning of the development of the Gran Telescopio Canarias (GTC), an Adaptive Optics (AO) system was considered necessary to exploit the full diffraction-limited potential of the telescope. The GTC AO system designed during the last years is based on a single deformable mirror conjugated to the telescope pupil, and a Shack-Hartmann wavefront sensor with 20 x 20 subapertures, using an OCAM2 camera. The GTCAO system will provide a corrected beam with a Strehl Ratio (SR) of 0.65 in K-band with bright natural guide stars. Most of the subsystems have been manufactured and delivered. The upgrade for the operation with a Laser Guide Star (LGS) system has been recently approved. The present status of the GTCAO system, currently in its laboratory integration phase, is summarized in this paper.