Marta S. Pimentel
University of Lisbon
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marta S. Pimentel.
PLOS ONE | 2012
Rui Rosa; Marta S. Pimentel; Joana Boavida-Portugal; Tatiana Teixeira; Katja Trübenbach; Mário S. Diniz
Background The knowledge about the capacity of organisms’ early life stages to adapt to elevated temperatures is very limited but crucial to understand how marine biota will respond to global warming. Here we provide a comprehensive and integrated view of biological responses to future warming during the early ontogeny of a keystone invertebrate, the squid Loligo vulgaris. Methodology/Principal Findings Recently-spawned egg masses were collected and reared until hatching at present day and projected near future (+2°C) temperatures, to investigate the ability of early stages to undergo thermal acclimation, namely phenotypic altering of morphological, behavioural, biochemical and physiological features. Our findings showed that under the projected near-future warming, the abiotic conditions inside the eggs promoted metabolic suppression, which was followed by premature hatching. Concomitantly, the less developed newborns showed greater incidence of malformations. After hatching, the metabolic burst associated with the transition from an encapsulated embryo to a planktonic stage increased linearly with temperature. However, the greater exposure to environmental stress by the hatchlings seemed to be compensated by physiological mechanisms that reduce the negative effects on fitness. Heat shock proteins (HSP70/HSC70) and antioxidant enzymes activities constituted an integrated stress response to ocean warming in hatchlings (but not in embryos). Conclusions/Significance The stressful abiotic conditions inside eggs are expected to be aggravated under the projected near-future ocean warming, with deleterious effects on embryo survival and growth. Greater feeding challenges and the lower thermal tolerance limits of the hatchlings are strictly connected to high metabolic demands associated with the planktonic life strategy. Yet, we found some evidence that, in the future, the early stages might support higher energy demands by adjusting some cellular functional properties to increase their thermal tolerance windows.
The Journal of Experimental Biology | 2014
Rui Rosa; Katja Trübenbach; Marta S. Pimentel; Joana Boavida-Portugal; Filipa Faleiro; Miguel Baptista; Gisela Dionísio; Ricardo Calado; Hans O. Pörtner; Tiago Repolho
Little is known about the capacity of early life stages to undergo hypercapnic and thermal acclimation under the future scenarios of ocean acidification and warming. Here, we investigated a comprehensive set of biological responses to these climate change-related variables (2°C above winter and summer average spawning temperatures and ΔpH=0.5 units) during the early ontogeny of the squid Loligo vulgaris. Embryo survival rates ranged from 92% to 96% under present-day temperature (13–17°C) and pH (8.0) scenarios. Yet, ocean acidification (pH 7.5) and summer warming (19°C) led to a significant drop in the survival rates of summer embryos (47%, P<0.05). The embryonic period was shortened by increasing temperature in both pH treatments (P<0.05). Embryo growth rates increased significantly with temperature under present-day scenarios, but there was a significant trend reversal under future summer warming conditions (P<0.05). Besides pronounced premature hatching, a higher percentage of abnormalities was found in summer embryos exposed to future warming and lower pH (P<0.05). Under the hypercapnic scenario, oxygen consumption rates decreased significantly in late embryos and newly hatched paralarvae, especially in the summer period (P<0.05). Concomitantly, there was a significant enhancement of the heat shock response (HSP70/HSC70) with warming in both pH treatments and developmental stages. Upper thermal tolerance limits were positively influenced by acclimation temperature, and such thresholds were significantly higher in late embryos than in hatchlings under present-day conditions (P<0.05). In contrast, the upper thermal tolerance limits under hypercapnia were higher in hatchlings than in embryos. Thus, we show that the stressful abiotic conditions inside the embryos capsules will be exacerbated under near-future ocean acidification and summer warming scenarios. The occurrence of prolonged embryogenesis along with lowered thermal tolerance limits under such conditions is expected to negatively affect the survival success of squid early life stages during the summer spawning period, but not winter spawning.
EPIC3Proceedings of the Royal Society B: Biological Sciences, The Royal Society, 280(1768), pp. 20131695-20131695, ISSN: 0962-8452 | 2013
Rui Rosa; Katja Trübenbach; Tiago Repolho; Marta S. Pimentel; Filipa Faleiro; Joana Boavida-Portugal; Miguel Baptista; Vanessa M. Lopes; Gisela Dionísio; Miguel Costa Leal; Ricardo Calado; Hans O. Pörtner
The combined effects of future ocean acidification and global warming on the hypoxia thresholds of marine biota are, to date, poorly known. Here, we show that the future warming and acidification scenario led to shorter embryonic periods, lower survival rates and the enhancement of premature hatching in the cuttlefish Sepia officinalis. Routine metabolic rates increased during the embryonic period, but environmental hypercapnia significantly depressed pre-hatchlings energy expenditures rates (independently of temperature). During embryogenesis, there was also a significant rise in the carbon dioxide partial pressure in the perivitelline fluid (PVF), bicarbonate levels, as well as a drop in pH and oxygen partial pressure (pO2). The critical partial pressure (i.e. hypoxic threshold) of the pre-hatchlings was significantly higher than the PVF oxygen partial pressure at the warmer and hypercapnic condition. Thus, the record of oxygen tensions below critical pO2 in such climate scenario indicates that the already harsh conditions inside the egg capsules are expected to be magnified in the years to come, especially in populations at the border of their thermal envelope. Such a scenario promotes untimely hatching and smaller post-hatching body sizes, thus challenging the survival and fitness of early life stages.
PLOS ONE | 2015
Marta S. Pimentel; Filipa Faleiro; Mário S. Diniz; Jorge Machado; Pedro Pousão-Ferreira; Myron A. Peck; Hans O. Pörtner; Rui Rosa
Until now, it is not known how the antioxidant and digestive enzymatic machinery of fish early life stages will change with the combined effects of future ocean acidification and warming. Here we show that high pCO2 (~1600 μatm) significantly decreased metabolic rates (up to 27.4 %) of flatfish larvae, Solea senegalensis, at both present (18 °C) and warmer temperatures (+4 °C). Moreover, both warming and hypercapnia increased the heat shock response and the activity of antioxidant enzymes, namely catalase (CAT) and glutathione S-transferase (GST), mainly in post-metamorphic larvae (30 dph). The lack of changes in the activity of CAT and GST of pre-metamorphic larvae (10 dph) seems to indicate that earlier stages lack a fully-developed antioxidant defense system. Nevertheless, the heat shock and antioxidant responses of post-metamorphic larvae were not enough to avoid the peroxidative damage, which was greatly increased under future environmental conditions. Digestive enzymatic activity of S. senegalensis larvae was also affected by future predictions. Hypercapnic conditions led to a decrease in the activity of digestive enzymes, both pancreatic (up to 26.1 % for trypsin and 74.5 % for amylase) and intestinal enzymes (up to 36.1 % for alkaline phosphatase) in post-metamorphic larvae. Moreover, the impact of ocean acidification and warming on some of these physiological and biochemical variables (namely, lower OCR and higher HSP and MDA levels) were translated into larvae performance, being significantly correlated with decreased larval growth and survival or increased incidence of skeletal deformities. The increased vulnerability of flatfish early life stages under future ocean conditions is expected to potentially determine recruitment and population dynamics in marine ecosystems.
Comparative Biochemistry and Physiology B | 2012
Miguel Baptista; Vanessa M. Lopes; Marta S. Pimentel; Narcisa M. Bandarra; Luís Narciso; António Marques; Rui Rosa
The objectives of the present work were to investigate the temporal variation in the fatty acid (FA) composition of the octocoral Veretillum cynomorium, examine the effects of reproduction and environmental factors on FA variation, and establish a chemotaxonomic identification for this species. Mean oocyte size-frequency distributions showed that the majority of the oocytes had an intermediate size (Group II) before spawning (April and June). The late-vitellogenic oocytes (Group III) became absent in August and October and, during this post-spawning period, oocytes were primarily of small size (Group I). Most of the major FA, 16:0, 18:0, 20:4n-6, 20:5n-3, and the tetracosapolyenoic fatty acid (TPA), 24:6n-3, varied significantly throughout the year (p<0.01), with two peaks in August/October and February. The boost in early oogenesis, also associated with warmer temperatures, seemed to be responsible for the observed increase in FA content between June and August. The highest values of FA content were observed in February when intermediate oogenesis (Group II) was at its peak and there were considerable levels of available food in the environment. Also, the increase in food availability seemed to trigger the final stages of gametogenesis. The high quantity of 18:1n-7, odd-numbered and branched FAs, suggested the presence of a dynamic bacterial community in V. cynomorium, probably as an adaptive response to the lack of symbiotic microalgae. Although the presence of TPAs is the main feature distinguishing octocorals from other coral species, here we showed that there was no single FA clearly dominating the FA composition of V. cynomorium throughout the year. Instead, four main FAs share similar concentrations: 16:0, 20:4n-6, 20:5n-3 and 24:6n-3. The predominance of these four FAs combined with the higher amount of 24:6n-3 when compared to 24:5n-6 may serve as a chemotaxonomic feature to distinguish this octocoral species (or genus).
Science of The Total Environment | 2018
Eduardo Sampaio; Ana Rita Lopes; Sofia Mateus Francisco; José Paula; Marta S. Pimentel; Ana Luísa Maulvault; Tiago Repolho; Tiago F. Grilo; Pedro Pousão-Ferreira; António Marques; Rui Rosa
Increases in carbon dioxide (CO2) and other greenhouse gases emissions are changing ocean temperature and carbonate chemistry (warming and acidification, respectively). Moreover, the simultaneous occurrence of highly toxic and persistent contaminants, such as methylmercury, will play a key role in further shaping the ecophysiology of marine organisms. Despite recent studies reporting mostly additive interactions between contaminant and climate change effects, the consequences of multi-stressor exposure are still largely unknown. Here we disentangled how Argyrosomus regius physiology will be affected by future stressors, by analysing organ-dependent mercury (Hg) accumulation (gills, liver and muscle) within isolated/combined warming (ΔT=4°C) and acidification (ΔpCO2=1100μatm) scenarios, as well as direct deleterious effects and phenotypic stress response over multi-stressor contexts. After 30days of exposure, although no mortalities were observed in any treatments, Hg concentration was enhanced under warming conditions, especially in the liver. On the other hand, elevated CO2 decreased Hg accumulation and consistently elicited a dampening effect on warming and contamination-elicited oxidative stress (catalase, superoxide dismutase and glutathione-S-transferase activities) and heat shock responses. Thus, potentially unpinned on CO2-promoted protein removal and ionic equilibrium between hydrogen and reactive oxygen species, we found that co-occurring acidification decreased heavy metal accumulation and contributed to physiological homeostasis. Although this indicates that fish can be physiologically capable of withstanding future ocean conditions, additional experiments are needed to fully understand the biochemical repercussions of interactive stressors (additive, synergistic or antagonistic).
Conservation Physiology | 2015
Filipa Faleiro; Miguel Baptista; Catarina Santos; Maria Aurélio; Marta S. Pimentel; Maria Rita Pegado; José Paula; Ricardo Calado; Tiago Repolho; Rui Rosa
Many seahorse species are already threatened worldwide, and we do not know how they will endure an additional threat as climate change. Our results show that adult seahorses (Hippocampus guttulatus) seem to be relatively well prepared to face future changes in ocean temperature, but not the combined effect of warming and acidification.
Marine Biology Research | 2012
Vanessa M. Lopes; Miguel Baptista; Marta S. Pimentel; Tiago Repolho; Luís Narciso; Rui Rosa
Abstract Veretillum cynomorium is an abundant colonial octocoral that exclusively inhabits soft sediment and sandy substrata of the Eastern Atlantic Ocean, but its reproductive biology is completely unknown. Here we show, for the first time, that this sea pen is gonochoristic at colony level, and seems to reproduce sexually through the broadcast spawning of gametes. The duration of the present study (12 months) in the Sado Estuary, Portugal, allowed us to identify one brief synchronous spawning event. Mean oocyte size–frequency distributions indicated that large orange oocytes (>650 µm), and part of the intermediate-sized ones were released in July. The formation of new small (colorless) oocytes occurred in the post-spawning period, between August and October. However, individual oocyte size–frequency distributions of the colonies showed that there was no synchrony in late and early oogenesis. Fecundity ranged between 1 and 40 oocytes per polyp, with an annual average of 9 oocytes per polyp. The occurrence of sex ratios biased towards the dominance of female colonies is reported and discussed.
Journal of Thermal Biology | 2016
Vanessa M. Lopes; Filipa Faleiro; Miguel Baptista; Marta S. Pimentel; José Paula; Ana Couto; Narcisa M. Bandarra; Patrícia Anacleto; António Marques; Rui Rosa
The oceans are becoming warmer, and the higher temperatures are expected to have a major impact on marine life at different levels of biological organization, especially at the most vulnerable early life stages. Thus, we hypothesize that the future warmer scenarios (here +3 °C) will affect the biochemical composition (amino acid - AA, and fatty acid-FA) of octopod (Octopus vulgaris) embryos and recently-hatched pelagic paralarvae. The main essential amino acids found in octopus embryos were arginine, leucine and lysine; while aspartic and glutamic acids, and taurine were the main non-essential amino acids. Palmitic, eicosapentaenoic and docosahexaenoic acids were the main FAs found in octopus tissues. Relevant ontogenetic changes were observed, namely a steep decrease in the content of many AAs, and a selective retention of FAs, thus evidencing the protein-based metabolism of these cephalopods. Temperature per si did not elicit significant changes in the overall FA composition, but was responsible for a significant decrease in the content of several AAs, indicating increased embryonic consumption.
Conservation Physiology | 2016
Filipa Faleiro; Marta S. Pimentel; Maria Rita Pegado; Regina Bispo; Ana Rita Lopes; Mário S. Diniz; Rui Rosa
Under a future warming scenario, sardine (Sardina pilchardus) larvae showed signs of thermal stress, namely a reduced survival, a steep increase of metabolic rates and a rise in heat shock response.