Marta Subias
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marta Subias.
Immunity | 2013
M. Kathryn Liszewski; Martin Kolev; Gaelle Le Friec; Marilyn K. Leung; Paula Bertram; Antonella F. Fara; Marta Subias; Matthew C. Pickering; Christian Drouet; Seppo Meri; T. Petteri Arstila; Pirkka T. Pekkarinen; Margaret H. Ma; Andrew P. Cope; Thomas Reinheckel; Santiago Rodríguez de Córdoba; Behdad Afzali; John P. Atkinson; Claudia Kemper
Summary Complement is viewed as a critical serum-operative component of innate immunity, with processing of its key component, C3, into activation fragments C3a and C3b confined to the extracellular space. We report here that C3 activation also occurred intracellularly. We found that the T cell-expressed protease cathepsin L (CTSL) processed C3 into biologically active C3a and C3b. Resting T cells contained stores of endosomal and lysosomal C3 and CTSL and substantial amounts of CTSL-generated C3a. While “tonic” intracellular C3a generation was required for homeostatic T cell survival, shuttling of this intracellular C3-activation-system to the cell surface upon T cell stimulation induced autocrine proinflammatory cytokine production. Furthermore, T cells from patients with autoimmune arthritis demonstrated hyperactive intracellular complement activation and interferon-γ production and CTSL inhibition corrected this deregulated phenotype. Importantly, intracellular C3a was observed in all examined cell populations, suggesting that intracellular complement activation might be of broad physiological significance.
Journal of The American Society of Nephrology | 2016
Sergio Recalde; Agustín Tortajada; Marta Subias; Jaouad Anter; Miquel Blasco; Ramona Maranta; Rosa M. Coco; Sheila Pinto; Marina Noris; Alfredo García-Layana; Santiago Rodríguez de Córdoba
The complement factor H (FH) mutation R1210C, which was described in association with atypical hemolytic uremic syndrome (aHUS), also confers high risk of age-related macular degeneration (AMD) and associates with C3 glomerulopathy (C3G). To reveal the molecular basis of these associations and to provide insight into what determines the disease phenotype in FH-R1210C carriers, we identified FH-R1210C carriers in our aHUS, C3G, and AMD cohorts. Disease status, determined in patients and relatives, revealed an absence of AMD phenotypes in the aHUS cohort and, vice versa, a lack of renal disease in the AMD cohort. These findings were consistent with differences in the R1210C-independent overall risk for aHUS and AMD between mutation carriers developing one pathology or the other. R1210C is an unusual mutation that generates covalent complexes between FH and HSA. Using purified FH proteins and surface plasmon resonance analyses, we demonstrated that formation of these FH-HSA complexes impairs accessibility to all FH functional domains. These data suggest that R1210C is a unique C-terminal FH mutation that behaves as a partial FH deficiency, predisposing individuals to diverse pathologies with distinct underlying pathogenic mechanisms; the final disease outcome is then determined by R1210C-independent genetic risk factors.
FEBS Letters | 2010
María Recuero; Teresa Muñoz; Jesús Aldudo; Marta Subias; María J. Bullido; Fernando Valdivieso
Oxidative stress, a risk factor in the pathophysiology of Alzheimers disease, is intimately associated with aging. We previously reported that the X‐XOD free radical generating system acts as a modulator of lipid metabolism and a mild inducer of apoptotic death. Using the same cell model, the present study examines the metabolism/processing of the amyloid precursor protein (APP). Prior to inducing cell death, X‐XOD promoted the secretion of α‐secretase‐cleaved soluble APP (sAPPα) and increased the level of APP carboxy‐terminal fragments produced by α and γ secretase (αCTF and γCTF/AICD). In contrast, it reduced the activity of β‐secretase and the level of secreted Aβ. The present results indicate that mild oxidative stress maintained throughout culturing regulates APP metabolism/processing in SK‐N‐MC human neuroblastoma cells.
FEBS Journal | 2015
Martín Alcorlo; Andrés López-Perrote; Sandra Delgado; Hugo Yébenes; Marta Subias; César Rodríguez-Gallego; Santiago Rodríguez de Córdoba; Oscar Llorca
The proteolytic cleavage of C3 to generate C3b is the central and most important step in the activation of complement, a major component of innate immunity. The comparison of the crystal structures of C3 and C3b illustrates large conformational changes during the transition from C3 to C3b. Exposure of a reactive thio‐ester group allows C3b to bind covalently to surfaces such as pathogens or apoptotic cellular debris. The displacement of the thio‐ester‐containing domain (TED) exposes hidden surfaces that mediate the interaction with complement factor B to assemble the C3‐convertase of the alternative pathway (AP). In addition, the displacement of the TED and its interaction with the macroglobulin 1 (MG1) domain generates an extended surface in C3b where the complement regulators factor H (FH), decay accelerating factor (DAF), membrane cofactor protein (MCP) and complement receptor 1 (CR1) can bind, mediating accelerated decay of the AP C3‐convertase and proteolytic inactivation of C3b. In the last few years, evidence has accumulated revealing that the structure of C3b in solution is significantly more flexible than anticipated. We review our current knowledge on C3b structural flexibility to propose a general model where the TED can display a collection of conformations around the MG ring, as well as a few specialized positions where the TED is held in one of several fixed locations. Importantly, this conformational heterogeneity in C3b impacts complement regulation by affecting the interaction with regulators.
Journal of Immunology | 2014
Marta Subias; Agustín Tortajada; Sara Gastoldi; Miriam Galbusera; Andrés López-Perrote; Lucia de Juana Lopez; Fernando A. González-Fernández; Ana Villegas-Martínez; Mercedes Domínguez; Oscar Llorca; Marina Noris; B. Paul Morgan; Santiago Rodríguez de Córdoba
The alternative pathway (AP) is critical for the efficient activation of complement regardless of the trigger. It is also a major player in pathogenesis, as illustrated by the long list of diseases in which AP activation contributes to pathology. Its relevance to human disease is further emphasized by the high prevalence of pathogenic inherited defects and acquired autoantibodies disrupting components and regulators of the AP C3-convertase. Because pharmacological downmodulation of the AP emerges as a broad-spectrum treatment alternative, there is a powerful interest in developing new molecules to block formation and/or activity of the AP C3-convertase. In this paper, we describe the generation of a novel mAb targeting human factor B (FB). mAb FB48.4.2, recognizing with high affinity an evolutionary-conserved epitope in the Ba fragment of FB, very efficiently inhibited formation of the AP C3-proconvertase by blocking the interaction between FB and C3b. In vitro assays using rabbit and sheep erythrocytes demonstrated that FB28.4.2 was a potent AP inhibitor that blocked complement-mediated hemolysis in several species. Using ex vivo models of disease we demonstrated that FB28.4.2 protected paroxysmal nocturnal hemoglobinuria erythrocytes from complement-mediated hemolysis and inhibited both C3 fragment and C5b-9 deposition on ADP-activated HMEC-1 cells, an experimental model for atypical hemolytic uremic syndrome. Moreover, i.v. injection of FB28.4.2 in rats blocked complement activation in rat serum and prevented the passive induction of experimental autoimmune Myasthenia gravis. As a whole, these data demonstrate the potential value of FB28.4.2 for the treatment of disorders associated with AP complement dysregulation in man and animal models.
The Journal of Allergy and Clinical Immunology | 2017
Anaïs Jiménez-Reinoso; Ana V. Marin; Marta Subias; Alberto López-Lera; Elena Román-Ortiz; Kathryn Payne; Cindy S. Ma; Giuseppina Arbore; Martin Kolev; Simon Freeley; Claudia Kemper; Stuart G. Tangye; Edgar Fernández-Malavé; Santiago Rodríguez de Córdoba; Margarita López-Trascasa; José R. Regueiro
To the Editor: Primary C3 deficiency is an extremely rare autosomalrecessive disease, with fewer than 50 families described worldwide. Plasma and intracellular C3 are considered B-cell receptor (BCR) and T-cell receptor (TCR) costimulators, respectively, but their contribution to lymphocyte biology remains obscure, particularly in humans. Reduced plasma C3 can be caused not only by primary C3 deficiency, due to loss-of-function C3 mutations, but also by secondary C3 deficiency or C3 consumption, due to gain-of-function C3 mutations or due to mutations in C3 regulators such as complement Factor I (CFI). We reasoned that comparing Band T-cell differentiation and function in primary and secondary plasma C3 deficiency might help to understand the role of plasma and intracellular C3 in adaptive immunity. We report the immunological features of lymphocytes from 9 individuals with low plasma C3 belonging to 6 families, with mutations causing primary or secondary C3 deficiency and, in some cases, chronic kidney disease stages 1 to 3 (see Fig E1,A, and Tables E1 and E3 in this article’s Online Repository at www.jacionline.org).
Molecular Immunology | 2017
Andrés López-Perrote; Reed E.S. Harrison; Marta Subias; Martín Alcorlo; Santiago Rodríguez de Córdoba; Dimitrios Morikis; Oscar Llorca
&NA; C3b, the central component of the alternative pathway (AP) of the complement system, coexists as a mixture of conformations in solution. These conformational changes can affect interactions with other proteins and complement regulators. Here we combine a computational model for electrostatic interactions within C3b with molecular imaging to study the conformation of C3b. The computational analysis shows that the TED domain in C3b is tethered ionically to the macroglobulin (MG) ring. Monovalent counterion concentration affects the magnitude of electrostatic forces anchoring the TED domain to the rest of the C3b molecule in a thermodynamic model. This is confirmed by observing NaCl concentration dependent conformational changes using single molecule electron microscopy (EM). We show that the displacement of the TED domain is compatible with C3b binding to Factor B (FB), suggesting that the regulation of the C3bBb convertase could be affected by conditions that promote movement in the TED domain. Our molecular model also predicts mutations that could alter the positioning of the TED domain, including the common R102G polymorphism, a risk variant for developing age‐related macular degeneration. The common C3b isoform, C3bS, and the risk isoform, C3bF, show distinct energetic barriers to displacement in the TED that are related to a network of electrostatic interactions at the interface of the TED and MG‐ring domains of C3b. These computational predictions agree with experimental evidence that shows differences in conformation observed in C3b isoforms purified from homozygous donors. Altogether, we reveal an ionic, reversible attachment of the TED domain to the MG ring that may influence complement regulation in some mutations and polymorphisms of C3b. HighlightsIonic tethering anchors the TED domain to the macroglobulin (MG) ring of C3b.A risk polymorphism for macular degeneration disrupts ionic tethering in C3b.C3bS and C3bF variants show distinct electrostatic and conformational properties.Detachment of the TED domain is compatible with FB binding to C3b.
/data/revues/00916749/unassign/S009167491731730X/ | 2017
Anaïs Jiménez-Reinoso; Ana V. Marin; Marta Subias; Alberto López-Lera; Elena Román-Ortiz; Kathryn Payne; Cindy S. Ma; Giuseppina Arbore; Martin Kolev; Simon J Freeley; Claudia Kemper; Stuart G. Tangye; Edgar Fernández-Malavé; Santiago Rodríguez de Córdoba; Margarita López-Trascasa; José Ramón Regueiro
Molecular Immunology | 2015
Agustín Tortajada; Sergio Recalde; Marta Subias; Ramona Maranta; Miquel Blasco; Marina Noris; Alfredo García-Layana; Santiago Rodríguez de Córdoba
Archive | 2014
Marina Noris; B. Paul Morgan; Mercedes Domínguez; Oscar Llorca; Andrés López-Perrote; Marta Subias; Agustín Tortajada; Sara Gastoldi