Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Márta Szekeres is active.

Publication


Featured researches published by Márta Szekeres.


Applied Physics Letters | 2003

The fabrication of photonic band gap materials with a two-dimensional defect

Yuxia Zhao; Kurt Wostyn; Gaetan de Schaetzen; Koen Clays; Louis Hellemans; André Persoons; Márta Szekeres; Robert A. Schoonheydt

Colloidal crystals with three-dimensional periodicities in the refractive index have a photonic band gap (PBG) in which electromagnetic waves are forbidden. We present a method to fabricate stacked colloidal crystals containing a two-dimensional defect as a middle layer by combining vertical deposition method with the Langmuir–Blodgett (LB) technique. The defect layer introduces an impurity mode within the optical stop band, which is observed as a defect peak (pass band) in the optical density spectrum. The result shows that the combination of vertical deposition with LB technique provides a way for introducing defect modes in PBG materials.


Colloids and Surfaces B: Biointerfaces | 2012

Enhanced stability of polyacrylate-coated magnetite nanoparticles in biorelevant media.

Angéla Hajdú; Márta Szekeres; Ildikó Y. Tóth; Rita A. Bauer; Judith Mihály; István Zupkó; Etelka Tombácz

Magnetite nanoparticles (MNPs) were prepared by alkaline hydrolysis of Fe(II) and Fe(III) chlorides. Adsorption of polyacrylic acid (PAA) on MNPs was measured at pH=6.5±0.3 and I=0.01 M (NaCl) to find the optimal PAA amount for MNP stabilization under physiological conditions. We detected an H-bond formation between magnetite surface groups and PAA by ATR-FTIR measurements, but bonds of metal ion-carboxylate complexes, generally cited in literature, were not identified at the given pH and ionic strength. The dependence of the electrokinetic potential and the aggregation state on the amount of added PAA at various pHs was measured by electrophoretic mobility and dynamic light-scattering methods. The electrokinetic potential of the naked MNPs was low at near physiological pH, but PAA adsorption overcharged the particles. Highly negatively charged, well-stabilized carboxylated MNPs formed via adsorption of PAA in an amount of approximately ten times of that necessary to compensate the original positive charge of the magnetite. Coagulation kinetics experiments revealed gradual enhancement of salt tolerance at physiological pH from ~0.001 M at no added PAA up to ~0.5 M at 1.12 mmol/g PAA. The PAA-coated MNPs exert no substantial effect on the proliferation of malignant (HeLa) or non-cancerous fibroblast cells (MRC-5) as determined by means of MTT assays.


International Journal of Molecular Sciences | 2013

Chemical and Colloidal Stability of Carboxylated Core-Shell Magnetite Nanoparticles Designed for Biomedical Applications

Márta Szekeres; Ildikó Y. Tóth; Erzsébet Illés; Angéla Hajdú; István Zupkó; Katalin Farkas; Gábor Oszlánczi; László Tiszlavicz; Etelka Tombácz

Despite the large efforts to prepare super paramagnetic iron oxide nanoparticles (MNPs) for biomedical applications, the number of FDA or EMA approved formulations is few. It is not known commonly that the approved formulations in many instances have already been withdrawn or discontinued by the producers; at present, hardly any approved formulations are produced and marketed. Literature survey reveals that there is a lack for a commonly accepted physicochemical practice in designing and qualifying formulations before they enter in vitro and in vivo biological testing. Such a standard procedure would exclude inadequate formulations from clinical trials thus improving their outcome. Here we present a straightforward route to assess eligibility of carboxylated MNPs for biomedical tests applied for a series of our core-shell products, i.e., citric acid, gallic acid, poly(acrylic acid) and poly(acrylic acid-co-maleic acid) coated MNPs. The discussion is based on physicochemical studies (carboxylate adsorption/desorption, FTIR-ATR, iron dissolution, zeta potential, particle size, coagulation kinetics and magnetization measurements) and involves in vitro and in vivo tests. Our procedure can serve as an example to construct adequate physico-chemical selection strategies for preparation of other types of core-shell nanoparticles as well.


Langmuir | 2012

Designed polyelectrolyte shell on magnetite nanocore for dilution-resistant biocompatible magnetic fluids

Ildikó Y. Tóth; Erzsébet Illés; Rita A. Bauer; Dániel Nesztor; Márta Szekeres; István Zupkó; Etelka Tombácz

Magnetite nanoparticles (MNPs) coated with poly(acrylic acid-co-maleic acid) polyelectrolyte (PAM) have been prepared with the aim of improving colloidal stability of core-shell nanoparticles for biomedical applications and enhancing the durability of the coating shells. FTIR-ATR measurements reveal two types of interaction of PAM with MNPs: hydrogen bonding and inner-sphere metal-carboxylate complex formation. The mechanism of the latter is ligand exchange between uncharged -OH groups of the surface and -COO(-) anionic moieties of the polyelectrolyte as revealed by adsorption and electrokinetic experiments. The aqueous dispersion of PAM@MNP particles (magnetic fluids - MFs) tolerates physiological salt concentration at composition corresponding to the plateau of the high-affinity adsorption isotherm. The plateau is reached at small amount of added PAM and at low concentration of nonadsorbed PAM, making PAM highly efficient for coating MNPs. The adsorbed PAM layer is not desorbed during dilution. The performance of the PAM shell is superior to that of poly(acrylic acid) (PAA), often used in biocompatible MFs. This is explained by the different adsorption mechanisms; metal-carboxylate cannot form in the case of PAA. Molecular-level understanding of the protective shell formation on MNPs presented here improves fundamentally the colloidal techniques used in core-shell nanoparticle production for nanotechnology applications.


Colloids and Surfaces A: Physicochemical and Engineering Aspects | 1998

Adsorption of salicylate on alumina surfaces

Márta Szekeres; Etelka Tombácz; Kinga Ferencz; Imre Dékány

Abstract The adsorption of salicylic acid/salicylate on γ-AlOOH (Brockmann alumina, boehmite) and on γ-Al(OH)3 (alumina gel, bayerite) was investigated in aqueous electrolyte media. The results of the adsorption and electrokinetic experiments revealed that salicylate adsorption cannot be explained simply in terms of electrostatic interactions: other contributions also have to be taken into account. Application of an electrostatic model of surface speciation equilibria calculated using the program MINTEQA2 allowed a qualitative description of the behaviour of the system. The deviation from the experimental data was larger for the more soluble alumina gel. The observed trends were interpreted in that formation of inner-sphere surface complexes leads to disordering of the solid surface, newly-formed surfaces thereby becoming available for adsorption processes.


Langmuir | 2014

Mechanism of in Situ Surface Polymerization of Gallic Acid in an Environmental-Inspired Preparation of Carboxylated Core–Shell Magnetite Nanoparticles

Ildikó Y. Tóth; Márta Szekeres; Rodica Turcu; Szilárd Sáringer; Erzsébet Illés; Dániel Nesztor; Etelka Tombácz

Magnetite nanoparticles (MNPs) with biocompatible coatings are good candidates for MRI (magnetic resonance imaging) contrasting, magnetic hyperthermia treatments, and drug delivery systems. The spontaneous surface induced polymerization of dissolved organic matter on environmental mineral particles inspired us to prepare carboxylated core-shell MNPs by using a ubiquitous polyphenolic precursor. Through the adsorption and in situ surface polymerization of gallic acid (GA), a polygallate (PGA) coating is formed on the nanoparticles (PGA@MNP) with possible antioxidant capacity. The present work explores the mechanism of polymerization with the help of potentiometric acid-base titration, dynamic light scattering (for particle size and zeta potential determination), UV-vis (UV-visible light spectroscopy), FTIR-ATR (Fourier-transformed infrared spectroscopy by attenuated total reflection), and XPS (X-ray photoelectron spectroscopy) techniques. We observed the formation of ester and ether linkages between gallate monomers both in solution and in the adsorbed state. Higher polymers were formed in the course of several weeks both on the surface of nanoparticles and in the dispersion medium. The ratio of the absorbances of PGA supernatants at 400 and 600 nm (i.e., the E4/E6 ratio commonly used to characterize the degree of polymerization of humic materials) was determined to be 4.3, similar to that of humic acids. Combined XPS, dynamic light scattering, and FTIR-ATR results revealed that, prior to polymerization, the GA monomers became oxidized to poly(carboxylic acid)s due to ring opening while Fe(3+) ions reduced to Fe(2+). Our published results on the colloidal and chemical stability of PGA@MNPs are referenced thoroughly in the present work. Detailed studies on biocompatibility, antioxidant property, and biomedical applicability of the particles will be published.


Journal of Nanomedicine & Nanotechnology | 2015

Hemocompatibility and Biomedical Potential of Poly(Gallic Acid) Coated Iron Oxide Nanoparticles for Theranostic Use

Márta Szekeres; Erzsébet Illés; Christina Janko; Katalin Farkas; Ildikó Y. Tóth; Dániel Nesztor; István Zupkó; Imre Földesi; Christoph Alexiou; Etelka Tombácz

Polyacid covered core-shell iron oxide nanoparticles were designed for potential use in biomedicine with special attention to theranostics - magnetic resonance imaging (MRI), magnetic hyperthermia and magnetic drug targeting. The magnetite nanoparticles coated with a gallic acid shell polymerized in situ on the nanoparticle surface (PGA@MNPs) were tested for hemocompatibility in blood, sedimentation rate, blood smear and blood cell viability experiments and for antioxidant capacity in Jurkat cells in the presence of H2O2 as reactive oxygen species. No signs of interaction of the nanoparticles with whole blood cells were found. In addition, the PGA@MNPs reduced significantly the oxidative stress mediated by H2O2 supporting earlier findings of MTT tests, namely, the improvement of cell viability in their presence. The in vitro tests revealed that PGA@MNPs are not only biocompatible but also bioactive. Preliminary experiments revealed that the nanoparticles are especially efficient MRI and magnetic hyperthermia agents. The r2 relaxivity was found to be one of the highest among published values (387 mM-1s-1) and they possess a relatively significant specific absorption rate (SAR) value of 11 W/g magnetite.


Interface Focus | 2016

Polyelectrolyte coating on superparamagnetic iron oxide nanoparticles as interface between magnetic core and biorelevant media

Etelka Tombácz; Katalin Farkas; Imre Földesi; Márta Szekeres; Erzsébet Illés; Ildikó Y. Tóth; Dániel Nesztor; Tamás Szabó

Nanoparticles do not exist in thermodynamical equilibrium because of high surface free energy, thus they have only kinetic stability. Spontaneous changes can be delayed by designed surface coating. In biomedical applications, superparamagnetic iron oxide nanoparticles (SPIONs) require an optimized coating in order to fulfil the expectation of medicine regulatory agencies and ultimately that of biocompatibility. In this work, we show the high surface reactivity of naked SPIONs due to ≡Fe–OH sites, which can react with H+/OH− to form pH- and ionic strength-dependent charges. We explain the post-coating of naked SPIONs with organic polyacids via multi-site complex bonds formed spontaneously. The excess polyacids can be removed from the medium. The free COOH groups in coating are prone to react with active biomolecules like proteins. Charging and pH- and salt-dependent behaviour of carboxylated SPIONs were characterized quantitatively. The interrelation between the coating quality and colloidal stability measured under biorelevant conditions is discussed. Our coagulation kinetics results allow us to predict colloidal stability both on storage and in use; however, a simpler method would be required to test SPION preparations. Haemocompatibility tests (smears) support our qualification for good and bad SPION manufacturing; the latter ‘promises’ fatal outcome in vivo.


Journal of Molecular Neuroscience | 2012

Evaluation of the MTHFR A1298C Variant in Leukoaraiosis

Zoltán Szolnoki; Istvan Szaniszlo; Márta Szekeres; Krisztina Hitri; Andras Kondacs; Yvette Mándi; Erika Nedo; Ferenc Somogyvári

Vascular demyelinization of the white matter of the brain is referred to as leukoaraiosis (LA). This very frequent entity is associated with a cognitive decline, thereby resulting in a deteriorating quality of life. Besides poorly controlled hypertension and aging, its development is reported to be associated with an elevated serum homocysteine level. Although the methylenetetrahydrofolate reductase (MTHFR) C677T genetic variant is associated with an elevated serum homocysteine level, it has not been proved to be an independent risk factor for LA. The aim of the present study was to examine whether the MTHFR A1298C genetic variant, which is also believed to be unfavorable, is associated with the presence of LA. The clinical and genetic data on 198 LA patients and 235 neuroimaging alteration-free controls were analyzed. The presence of the A1298C or the 1298CC variant was calculated to be a risk factor for LA, as compared with the absence of both of them. The clustering of the heterozygous A1298C and C677T variants was proved to involve the risk of LA. Our results suggest that the MTHFR A1298C variant confers an independent genetic risk of LA, and this pathological role may be amplified by the MTHFR C677T variant.


The Scientific World Journal | 2014

The effect of hydroxyl moieties and their oxosubstitution on bile acid association studied in floating monolayers

Márta Szekeres; Béla Viskolcz; Mihalj Poša; János Csanádi; Dušan Škorić; Erzsébet Illés; Ildikó Y. Tóth; Etelka Tombácz

Bile salt aggregates are promising candidates for drug delivery vehicles due to their unique fat-solubilizing ability. However, the toxicity of bile salts increases with improving fat-solubilizing capability and so an optimal combination of efficient solubilization and low toxicity is necessary. To improve hydrophilicity (and decrease toxicity), we substituted hydroxyl groups of several natural bile acid (BA) molecules for oxogroups and studied their intrinsic molecular association behavior. Here we present the comparative Langmuir trough study of the two-dimensional (2D) association behavior of eight natural BAs and four oxoderivatives (traditionally called keto-derivatives) floated on an aqueous subphase. The series of BAs and derivatives showed systematic changes in the shape of the compression isotherms. Two types of association could be distinguished: the first transition was assigned to the formation of dimers through H-bonding and the second to the hydrophobic aggregation of BA dimers. Hydrophobic association of BA molecules in the films is linked to the ability of forming H-bonded dimers. Both H-bond formation and hydrophobic association weakened with increasing number of hydroxyl groups, decreasing distance between hydroxyl groups, and increasing oxosubstitution. The results also show that the Langmuir trough method is extremely useful in selecting appropriate BA molecules to design drug delivery systems.

Collaboration


Dive into the Márta Szekeres's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge