Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marta Wańkowska is active.

Publication


Featured researches published by Marta Wańkowska.


Animal Reproduction Science | 2009

Effect of intracerebroventricular infusion of leptin on the secretory activity of the GnRH/LH axis in fasted prepubertal lambs.

Anna Wójcik-Gładysz; Marta Wańkowska; Tomasz Misztal; Katarzyna Romanowicz; Jolanta Polkowska

Leptin is believed to link metabolic status to reproductive processes. The aim of the present study was to investigate the effect of exogenous leptin on the secretory activity of GnRH/LH system in acutely undernourished prepubertal, female lambs. Merino lambs were randomly divided into four groups, two standard-fed and two fasted for 72 h. One standard and one fasted groups were infused intracerebroventricularly (i.c.v.) with the vehicle; the remaining standard and fasted groups were infused with leptin (25 microg/120 microl/h). Leptin was administered in series of four 1-h infusions at 30-min intervals for 3 consecutive days from 08:30 to 14:00 h. Blood samples were collected on day 0 (before infusions) and on day 3 every 10 min over a 6-h period. Immediately after the experiment, the sheep were slaughtered and brains fixed in situ. Hypothalamic and pituitary tissues were prepared for further immunohistochemical and hybridization in situ analysis. In fasted sheep, increased GnRH levels in the median eminence (P<0.001) and LH beta levels in the pituitary cells (P<0.001) plus decreased LH beta mRNA and LH pulsatility in blood plasma were observed (P<0.05). In leptin-infused fasted sheep, GnRH levels in the median eminence decreased (P<0.001), LH beta mRNA hybridization signal increased, LH beta levels decreased in the pituitary cells (P<0.001) and LH pulsatility increased (P<0.05) in the blood plasma. These results indicate that, in prepubertal sheep, the GnRH/LH axis is sensitive to the fasting signal, that influence of which can be reversed by leptin. Leptin cancels out the suppressing effect of fasting on LH secretion by augmentation of GnRH.


Journal of Chemical Neuroanatomy | 2002

Intracerebroventricular infusion of neuropeptide Y up-regulates synthesis and accumulation of luteinizing hormone but not follicle stimulating hormone in the pituitary cells of prepubertal female lambs

Marta Wańkowska; Yannick Lerrant; Anna Wójcik-Gładysz; Anna Starzec; Raymond Counis; Jolanta Polkowska

Neuropeptide Y (NPY) is a putative neuroregulator of the reproductive axis in the central nervous system. In this study we evaluated the effects of central infusion of exogenous NPY on the secretory activity of pituitary gonadotrophic cells in prepubertal lambs. Immature female Merino sheep (n=12) were infused of Ringer solution (control) or 50 microg of NPY to the third ventricle for 5 min and then slaughtered 3 h later. Immunoreactive luteinizing hormone (LH) and follicle stimulating hormone (FSH) cells were localised by immunohistochemistry using antibody raised against LHbeta and FSHbeta. Messenger RNA analyses were performed by in situ hybridisation using sense and antisense riboprobes produced from beta subunits of LH and FSH cDNA clones. The results were generated by computer image analysis to determine the area fraction occupied by immunoreactive and/or hybridising cells and optical density for immunostaining and hybridisation signal. LH in the blood plasma was determined by radioimmunoassay. It was found, that in the lambs infused with NPY the area fraction and optical density for immunoreactive LH cells and mRNA LHbeta-expressing cells increased significantly (P<0.001), compared to the vehicle-infused animals. The concentration of LH in the blood plasma did not differ between control and treated groups. The NPY infusions had no effect on the immunoreactivity of FSH cells or on expression of mRNA for FSHbeta. In conclusion we suggest that NPY may be an important component of mechanisms stimulating the synthesis and storage but not the release of LH in the pituitary gonadotrophs from prepubertal female sheep. In addition, this effect is specific for LH, no such effect was apparent on FSH.


Journal of Chemical Neuroanatomy | 2004

Effects of intracerebroventricular infusion of genistein on gonadotrophin subunit mRNA and immunoreactivity of gonadotrophins and oestrogen receptor-α in the pituitary cells of the anoestrous ewe

Jolanta Polkowska; Yvonne Ridderstråle; Marta Wańkowska; Katarzyna Romanowicz; Tomasz Misztal; A. Madej

The present study was designed to demonstrate whether genistein, a synthetic phytoestrogen, infused into the third ventricle of the brain could affect the gonadotrophic cells regarding the presence of oestrogen receptor-alpha immunoreactivity and gonadotrophin subunit mRNA hybridising reaction in the ewe. Ewes (n=7), aged 2 years, in early anoestrous season were infused with Ringer-Locke solution (control, n=3) or 10 microg/100 microl/h of genistein (n=4) into the third ventricle over a 5 h period and slaughtered the following morning. Immunoreactivity of luteinizing hormone (LH), follicle-stimulating hormone (FSH) and oestrogen receptor-alpha (ERalpha) was determined in the adenohypophysis by immunohistochemistry using antibodies raised against LHbeta, FSHbeta, and ERalpha. Messenger RNA analyses were performed by non-isotope in situ hybridisation using sense and antisense riboprobes produced from beta subunits of LH and FSH cDNA clones. Computer image analysis was used to determine the percent of cells exhibiting immunohistochemical and/or hybridising reaction. It was found that in ewes infused with genistein, the percentage of LH-positive cells and the density of immunoreactive-LHbeta material decreased significantly (P<or=0.001), but the percentage of mRNA LHbeta-expressing cells and the intensity of the hybridisation signal increased significantly (P<or=0.001), compared to the vehicle-infused animals. The genistein infusions had no effect on the immunoreactivity of FSH cells or on the expression of mRNA for FSHbeta. The percentage of ERalpha-positive cells increased significantly after genistein infusions (P<or=0.001) and this increase was significant in the LH but not in FSH cells (P<or=0.001). In conclusion, we suggest that genistein can stimulate the expression of immunoreactive ERalpha in the pituitary LH-cells but not in FSH-cells and change the endocrine activity of LH-producing cells of anoestral ewes.


Journal of Chemical Neuroanatomy | 2006

The postnatal ontogeny of gonadotroph cells in the female sheep. Developmental patterns of synthesis, storage and release of gonadotrophic hormones.

Marta Wańkowska; Jolanta Polkowska

The aim of this study was to determine the developmental changes in the synthesis, storage and release of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in the hypophyseal gonadotroph cells from infancy to peripuberty of ovine ontogeny. An examination has been made in 15 infantile (12-, 15-week-old) and juvenile (22-, 30-week-old) ovary-intact sheep. Histomorphological and functional changes in the adenohypophyseal population of gonadotrophs were assayed with hybridohistochemistry, immunohistochemistry and radioimmunoassay. The percentage of the adenohypophyseal area (PAA) occupied by gonadotrophs containing LHbeta-mRNA or FSHbeta-mRNA was highest (P < 0.05) in the 15-week-old sheep compared with the other stages. The gradual increase in the PAA occupied by immunoreactive (ir)-LHbeta-cells from the 12th to 30th week of age was observed (P < 0.05) and has been interpreted as the increase in the storage of LH. This histomorphological change was accompanied by the gradual increase in the LH pulse frequency from the 15th to 30th week of age (P < 0.05). The PAA occupied by ir-FSHbeta-cells was extremely high in the infantile sheep, and subsequently, low in the juvenile sheep (P < 0.05). Altogether, similar patterns of pretranslational synthesis of the LHbeta- and FSHbeta-subunit but clearly different storage patterns of gonadotrophins were observed. The postnatal development of gonadotrophins seems to be determined by the progressive increase in the storage of LH until peripuberty and by the acute decrease in the storage of FSH during the infantile/juvenile shift. These findings imply the different intrahypophyseal regulation of LH and FSH posttranscriptional processing during the period of transition between infancy and peripuberty in female sheep.


Animal Reproduction Science | 2003

The effect of dietary protein restriction on the secretion of LH and FSH in pre-pubertal female lambs.

Jolanta Polkowska; Y Lerrant; Marta Wańkowska; Anna Wójcik-Gładysz; A Starzec; R Counis

The effect of restricted dietary protein on the synthesis, storage and release of LH and FSH was studied in pre-pubertal female lambs. The experiment started when the lambs were aged 12 weeks and weighed 26.0+/-1.6 kg. It was conducted for 25 weeks. The lambs were fed isocaloric diets containing either a restricted level of crude protein (8% CP; n=6; treatment R) or an elevated one (18% CP; n=4; treatment E). At 37 weeks of age and before the first oestrous cycle, blood samples were collected over 6 h at 10 min intervals for LH assay. The lambs were slaughtered and their brains recovered and fixed in situ. Immuno-reactive (IR) LH and FSH cells were localised by immunohistochemistry techniques. Messenger RNA analyses used by non-isotope in situ hybridisation with sense and anti-sense riboprobes from beta subunits of LH and FSH cDNA clones. Data were generated using computer analysis to measure the proportion of IR and/or hybridising cells and their optical density for immuno-staining and hybridisation signal. Plasma LH was measured by RIA. The daily live-weight gains were 56.5+/-13.1 g and 97.8+/-14.3 g for R and E lambs, respectively (P<0.05), so that final weights at slaughter were 36.1+/-1.97 kg and 39.1+/-3.44 kg, respectively (P<0.05). The number of cells expressing LH beta mRNA and the optical density of this hybridisation signal was significantly (P<0.001) lower in the R lambs but the number of IR LH positive cells was higher (P<0.001) than for the E lambs. The concentration of LH in the plasma of R sheep was lower (P<0.05) than the E group and this response was associated with a decrease (P<0.05) in LH pulse frequency and amplitude. Dietary protein concentration appeared to have no effect on the IR in FSH cells or on the expression of FSH beta mRNA. In summary, the low protein diet influenced the body weight and weight gain of growing lambs and exerted an inhibitory effect on the synthesis and the release of LH in the pituitary gonadotrophs. No such effect was observed for FSH. It was concluded that the protein concentration of the diet consumed during the growth of female lambs may be an important modulator of processes leading to the pre-pubertal rise in LH.


Journal of Chemical Neuroanatomy | 2010

Hypothalamic arcuate neuropeptide Y-neurons decrease periventricular somatostatin-neuronal activity before puberty in the female lamb: Morphological arguments

Yves Tillet; Sophie Picard; Gilles Bruneau; Philippe Ciofi; Marta Wańkowska; Anna Wójcik-Gładysz; Jolanta Polkowska

It is assumed that hypothalamic somatostatin plays a dominant role in the regulation of growth of developing lambs. On the other side, neuropeptide Y (NPY) neurons of the arcuate (ARC) nucleus are potentially involved in the control of gonadotrophins in prepubertal lambs and also of growth hormone (GH) secretion in adults. This study therefore investigated whether the transition from the prepubertal to the peripubertal period is accompanied by changes in NPY-ir and NPY mRNA content in neurons of the ARC nucleus and their putative projections to somatostatin neurons in both the ARC and periventricular (PEV) nuclei. The hypothalami of prepubertal (17-week-old) and peripubertal (32-week-old) female lambs were compared using single and double-labelling immunohistochemistry, and hybridisation in situ for NPY. Single-labelling for NPY mRNA and NPY-ir was quantified by image analysis using a light microscope and expressed as the percent area stained and/or the integral density of the reaction. Double-labelling for NPY-somatostatin relationships was analysed by confocal microscopy. Our data suggest that there are no detectable changes in NPY-ir in the PEV nucleus in the period leading up to puberty, whereas both the distributional area and intensity of NPY-labelling in the ARC are significantly higher in peripubertal compared to prepubertal sheep. In contrast, NPY mRNA levels are higher in prepubertal than in peripubertal ewes in the ARC nucleus. Confocal microscopy suggests the existence of NPY-somatostatin axo-somatic contacts in both PEV and ARC nuclei. In the PEV nucleus, the number of close appositions between NPY-ir fibres and somatostatin-ir perikarya is higher in prepubertal than in peripubertal ewes, but in the ARC no such difference was observed. In conclusion, our observations suggest that there is decreased activity of the NPY neurons of the ARC nucleus closely related to somatostatin neurons in the PEV nucleus at the onset of puberty. The withdrawal of this NPY effect may allow a higher release of somatostatin, which consequently inhibits GH secretion and stops growth. Both peptides are involved in the transmission of signals leading to stop growth at puberty.


Animal Reproduction Science | 2008

The neuroendocrine events during the ovine growth-promoted maturation: the developmental importance of hypophysiotrophic action of somatostatin in ewes.

Marta Wańkowska; Katarzyna Romanowicz; Jolanta Polkowska

The comparison of hypothalamic somatostatin (SRIH)-neuronal systems, hypophyseal somatotroph populations and growth hormone (GH) blood plasma patterns among developmental stages, from infancy until puberty, may help to describe the nature of the hypothalamo-hypophyseal mechanisms underlying the changes in GH on the systemic level leading to the somatic, that is growth and sexual maturity in sheep. The aim of this study was to elucidate (i) developmental importance of hypophysiotrophic action of SRIH, (ii) precise time of maturation of this action and (iii) photoperiodic regulation of the postnatal ontogeny in ewes. The central and peripheral activity of the SRIH-GH axis is described through a sequence of histomorphological and functional changes in Merino ewes born after the summer solstice. The actual time of puberty of these animals was delayed until the following breeding season, when the sheep were 14-month old. Histomorphometric examinations have been made in 21 infantile (preweanling, 12-week old), prepubertal (15- and 22-week old), peripubertal (30- and 52-week old) and pubertal (63-week old) ovary-intact sheep. Functional examinations of the GH plasma levels were determined every 1-2 weeks during the period from the 12th to 63rd week of age. The highest GH level was observed at the 13th week of age, on the beginning of the breeding season. The fluctuations in the GH level just after the winter and summer solstice were detected as the one and only deviation from a rule of uniformly low GH concentrations observed until puberty. The age of the fall in serum GH levels corresponded with the postweaning period and the beginning of the phase of the lower daily live-weight gains (growth rate). Thus, the development of GH secretion was finished before the 15th week of age, that is together with the ending of the transitional infantile/prepubertal period, whereas the maturational processing within the hypothalamo-hypophyseal unit prolonged after the 15th week of age until 22 weeks of age and concerned the role of SRIH as the hypophysiotrophic factor regulating somatic maturation, i.e. attenuating growth. Altogether, the pattern of GH secretion during weaning is important for the shift between infancy and prepuberty depended upon an intensive growth and defined as growth maturation. The maturation of the SRIH-GH axis is finished by 22 weeks of age, independently of photoperiodic influences, whereas the neuroendocrine mechanisms to integrate somatic, that is growth and sexual maturation, are seasonal in nature in the ewe. Our observations confirm the hypothesis of the inherent endogenous rhythm controlling somatic maturation in the sheep.


Reproductive Biology | 2010

The pituitary endocrine mechanisms involved in mammalian maturation: maternal and photoperiodic influences.

Marta Wańkowska; Jolanta Polkowska

This review is designed to describe some pituitary mechanisms indispensable for growth and sexual maturation during the neuroendocrine adaptation of the female mammal to the extrauterine environment. We define the phases of postnatal development on the basis of secretory patterns of hormones. The infantile period is characterized by accelerated growth, and elevated secretion of growth hormone (GH) and follicle-stimulating hormone (FSH) in contrast to the diminished secretion of luteinizing hormone (LH). The transition from infancy to prepuberty generates the attenuation of somatic growth in non-primate mammals and the beginning of sexual maturation. The mechanisms of this transition involve the effects of weaning, which is associated with a rupture of the young-mother bond and, if abrupt, results in the stress of maternal deprivation. Maternal deprivation involves the stress-like endocrine response of pituitary and influences the mechanisms underlying the secretion of GH and FSH. An acute decrease in the secretion of GH and FSH at the initiation of prepuberty and an increase in the storage and pulsatile release of LH according to progressive prepubertal stages are pituitary endocrine features of post-infantile maturation. There are two factors important for timing of puberty, the maturity of gonadotroph population manifested by the adequate size of LH-containing cell subpopulation and the circumstances of an external environment optimal for reproductive functions in adults. Thus, the intrapituitary endocrine mechanisms of maturation have a psychosomatic nature during weaning and histomorphological nature during the postinfantile transition to puberty. In seasonal breeders, the endocrine timing of puberty has a circumannual seasonal nature.


Animal Reproduction Science | 2010

Influence of gonadal hormones on endocrine activity of gonadotroph cells in the adenohypophysis of male lambs during the postnatal transition to puberty

Marta Wańkowska; Jolanta Polkowska; Anna Wójcik-Gładysz; Katarzyna Romanowicz

Using histomorphological and functional criteria we describe the feedback mechanisms which could play a role in the regulation of the gonadotrophic axis during the postnatal transition to puberty in male lambs. The working hypothesis was that the testicular factors change the peripheral levels of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) by influencing the synthesis rate and storage of LH and FSH in adenohypophyseal gonadotroph cells of weanling and weaned pubertal lambs. The examination was made in (i) 9-week-old infantiles, suckling lambs undergoing weaning, testis-intact (TEI) and orchidectomised (ORCHX) at the 6th week of age, and (ii) 16-week-old pubertal lambs TEI and ORCHX at the 12th week of age (n=5 per group). Changes in gonadotrophs were assayed with hybridohistochemistry, immunohistochemistry and radioimmunoassay. The percentage of the adenohypophyseal area (PA) occupied by cells containing LHβ-mRNA and FSHβ-mRNA and peripheral levels of both gonadotrophins were lower (P<0.01) in the 16-week-old TEI lambs in comparison with the 9-week-old ones. The PA occupied by cells immunoreactive for LHβ was lower (P<0.01), whereas in the case of FSH was greater (P<0.001) in the 16-week-old lambs. After orchidectomy the PA occupied by gonadotrophs stained for LHβ-mRNA was greater (P<0.01) in 16-week-old lambs. The PA occupied by LHβ-labelled cells was lower (P<0.05) in the 9-week-old ORCHX lambs, whereas in 16-week-old ones was higher (P<0.05) in comparison with the TEI lambs. The circulating LH was greater (P<0.01) in the ORCHX 9- and 16-week-old lambs compared to the TEI ones. The PA occupied by cells containing FSHβ-mRNA and the plasma FSH concentration were greater (P<0.001) after orchidectomy in lambs from both age stages. The PA occupied by FSHβ-labelled cells was greater (P<0.01) in the 9-week-old ORCHX lambs, whereas in 16-week-old ones was lower (P<0.05) compared to the lambs from TEI groups. In conclusion, in infantile lambs testicular factors may play inhibitory role in regulating FSH synthesis rate, storage and release in contrast to the stimulatory role in regulating LH storage reflected by the inhibitory role in regulating LH release. In lambs at the beginning of puberty, testicular factors may play inhibitory role in regulating LH synthesis rate, storage and release in contrast to the stimulatory role in regulating FSH storage reflected by the inhibitory role in regulating FSH synthesis rate and release. The effects of testicular hormones on the gonadotrophin storage, i.e. releasable pools in adenohypophyseal cells, are specific for both LH and FSH in lambs during the postnatal transition to puberty. Thus, the initiation of puberty in male sheep is a function of change of the inhibitory role of gonadal factors in regulating FSH storage to the stimulatory one and the stimulatory role of gonadal factors in regulating LH storage to the inhibitory one.


Journal of Chemical Neuroanatomy | 2006

Effects of maternal deprivation on the adrenocorticotrophic and gonadotrophic axes in the hypothalamo–pituitary unit of preweanling female sheep: The histomorphometric approach

Marta Wańkowska; Anna Starzec; Raymond Counis; Jolanta Polkowska

This study was designed to investigate the histochemical effects of maternal deprivation on the adrenocorticotrophic and gonadotrophic axes in the hypothalamo-pituitary unit of preweanling lambs. Twelve-week-old female lambs were divided into either the control (lambs reared under undisturbed maternal conditions; n=3) or the maternally deprived group (lambs separated for three days from their dams; n=3). The corticotrophin-releasing hormone (CRH) and gonadotrophin-releasing hormone (GnRH) in the median eminence and the adenohypophyseal adrenocorticotrophin (ACTH), gonadotrophins (LH and FSH) and mRNAs for their beta-subunits were investigated using the immunohistochemistry or hybridohistochemistry. In maternally deprived lambs, the percentage of the area occupied by immunoreactive (ir)-CRH nerve terminals was lower (P<0.05) and the percentage of the adenohypophyseal area (PAA) occupied by ir-ACTH cells was higher (P<0.05) compared with the control lambs. In the hypothalamo-gonadotrophic axis of maternally deprived lambs the percentage of area occupied by ir-GnRH nerve terminals was higher (P<0.05) and the PAA occupied by ir-FSHbeta cells was lower (P<0.05) in comparison with controls. The PAA occupied by gonadotrophs detected using hybridohistochemistry was higher (P<0.05) for LHbeta-mRNA in contrast to a lower (P<0.05) percentage for FSHbeta-mRNA in maternally deprived lambs compared with those staying with dams. In conclusion, maternal deprivation affected the accumulation of CRH and ACTH. The different and more striking alterations in FSH synthesis and storage in comparison with those concerning LH were observed in maternally deprived lambs. Thus, rupture of the preweanling young-mother social contact can affect the gonadotroph population activity, especially that relating to FSH-producing cells in the infantile female sheep.

Collaboration


Dive into the Marta Wańkowska's collaboration.

Top Co-Authors

Avatar

Jolanta Polkowska

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomasz Misztal

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Alina Gajewska

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Madej

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Anna Starzec

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Konrad Górski

Polish Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge