Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martha Cordova is active.

Publication


Featured researches published by Martha Cordova.


Journal of Bacteriology | 2011

Regulation of the Competence Pathway as a Novel Role Associated with a Streptococcal Bacteriocin

Delphine Dufour; Martha Cordova; Dennis G. Cvitkovitch; Céline M. Lévesque

The oral biofilm organism Streptococcus mutans must face numerous environmental stresses to survive in its natural habitat. Under specific stresses, S. mutans expresses the competence-stimulating peptide (CSP) pheromone known to induce autolysis and facilitate the uptake and incorporation of exogenous DNA, a process called DNA transformation. We have previously demonstrated that the CSP-induced CipB bacteriocin (mutacin V) is a major factor involved in both cellular processes. Our objective in this work was to characterize the role of CipB bacteriocin during DNA transformation. Although other bacteriocin mutants were impaired in their ability to acquire DNA under CSP-induced conditions, the ΔcipB mutant was the only mutant showing a sharp decrease in transformation efficiency. The autolysis function of CipB bacteriocin does not participate in the DNA transformation process, as factors released via lysis of a subpopulation of cells did not contribute to the development of genetic competence in the surviving population. Moreover, CipB does not seem to participate in membrane depolarization to assist passage of DNA. Microarray-based expression profiling showed that under CSP-induced conditions, CipB regulated ∼130 genes, among which are the comDE locus and comR and comX genes, encoding critical factors that influence competency development in S. mutans. We also discovered that the CipI protein conferring immunity to CipB-induced autolysis also prevented the transcriptional regulatory activity of CipB. Our data suggest that besides its role in cell lysis, the S. mutans CipB bacteriocin also functions as a peptide regulator for the transcriptional control of the competence regulon.


Journal of Bacteriology | 2012

Regulation of Bacteriocin Production and Cell Death by the VicRK Signaling System in Streptococcus mutans

Dilani B. Senadheera; Martha Cordova; Eduardo A. Ayala; L. E. Chávez de Paz; Kamna Singh; Jennifer S. Downey; Gunnel Svensäter; Steven D. Goodman; Dennis G. Cvitkovitch

The VicRK two-component signaling system modulates biofilm formation, genetic competence, and stress tolerance in Streptococcus mutans. We show here that the VicRK modulates bacteriocin production and cell viability, in part by direct modulation of competence-stimulating peptide (CSP) production in S. mutans. Global transcriptome and real-time transcriptional analysis of the VicK-deficient mutant (SmuvicK) revealed significant modulation of several bacteriocin-related loci, including nlmAB, nlmC, and nlmD (P < 0.001), suggesting a role for the VicRK in producing mutacins IV, V, and VI. Bacteriocin overlay assays revealed an altered ability of the vic mutants to kill related species. Since a well-conserved VicR binding site (TGTWAH-N(5)-TGTWAH) was identified within the comC coding region, we confirmed VicR binding to this sequence using DNA footprinting. Overexpression of the vic operon caused growth-phase-dependent repression of comC, comDE, and comX. In the vic mutants, transcription of nlmC/cipB encoding mutacin V, previously linked to CSP-dependent cell lysis, as well as expression of its putative immunity factor encoded by immB, were significantly affected relative to the wild type (P < 0.05). In contrast to previous reports that proposed a hyper-resistant phenotype for the VicK mutant in cell viability, the release of extracellular genomic DNA was significantly enhanced in SmuvicK (P < 0.05), likely as a result of increased autolysis compared with the parent. The drastic influence of VicRK on cell viability was also demonstrated using vic mutant biofilms. Taken together, we have identified a novel regulatory link between the VicRK and ComDE systems to modulate bacteriocin production and cell viability of S. mutans.


Journal of Bacteriology | 2015

Role of the Streptococcus mutans CRISPR-Cas Systems in Immunity and Cell Physiology

M. A. Serbanescu; Martha Cordova; Kirsten Krastel; R. Flick; N. Beloglazova; A. Latos; Alexander F. Yakunin; Dilani B. Senadheera; Dennis G. Cvitkovitch

CRISPR-Cas systems provide adaptive microbial immunity against invading viruses and plasmids. The cariogenic bacterium Streptococcus mutans UA159 has two CRISPR-Cas systems: CRISPR1 (type II-A) and CRISPR2 (type I-C) with several spacers from both CRISPR cassettes matching sequences of phage M102 or genomic sequences of other S. mutans. The deletion of the cas genes of CRISPR1 (ΔC1S), CRISPR2 (ΔC2E), or both CRISPR1+2 (ΔC1SC2E) or the removal of spacers 2 and 3 (ΔCR1SP13E) in S. mutans UA159 did not affect phage sensitivity when challenged with virulent phage M102. Using plasmid transformation experiments, we demonstrated that the CRISPR1-Cas system inhibits transformation of S. mutans by the plasmids matching the spacers 2 and 3. Functional analysis of the cas deletion mutants revealed that in addition to a role in plasmid targeting, both CRISPR systems also contribute to the regulation of bacterial physiology in S. mutans. Compared to wild-type cells, the ΔC1S strain displayed diminished growth under cell membrane and oxidative stress, enhanced growth under low pH, and had reduced survival under heat shock and DNA-damaging conditions, whereas the ΔC2E strain exhibited increased sensitivity to heat shock. Transcriptional analysis revealed that the two-component signal transduction system VicR/K differentially modulates expression of cas genes within CRISPR-Cas systems, suggesting that VicR/K might coordinate the expression of two CRISPR-Cas systems. Collectively, we provide in vivo evidence that the type II-A CRISPR-Cas system of S. mutans may be targeted to manipulate its stress response and to influence the host to control the uptake and dissemination of antibiotic resistance genes.


Molecular and Cellular Endocrinology | 2011

Contributions of Steroidogenic Factor 1 to the Transcription Landscape of Y1 Mouse Adrenocortical Tumor Cells

Bernard P. Schimmer; Jennivine Tsao; Martha Cordova; Quaid Morris; Joshua O. Scheys

The contribution of steroidogenic factor 1 (SF-1) to the gene expression profile of Y1 mouse adrenocortical cells was evaluated using short hairpin RNAs to knockdown SF-1. The reduced level of SF-1 RNA was associated with global changes that affected the accumulation of more than 2000 transcripts. Among the down-regulated transcripts were several with functions in steroidogenesis that were affected to different degrees--i.e., Mc2r>Scarb1>Star≥Hsd3b1>Cyp11b1. For Star and Cyp11b1, the different levels of expression correlated with the amount of residual SF-1 bound to the proximal promoter regions. The knockdown of SF-1 did not affect the accumulation of Cyp11a1 transcripts even though the amount of SF-1 bound to the proximal promoter of the gene was reduced to background levels. Our results indicate that transcripts with functions in steroidogenesis vary in their dependence on SF-1 for constitutive expression. On a more global scale, SF-1 knockdown affects the accumulation of a large number of transcripts, most of which are not recognizably involved in steroid hormone biosynthesis.


Journal of Endodontics | 2015

Photoactivated Polycationic Bioactive Chitosan Nanoparticles Inactivate Bacterial Endotoxins

Annie Shrestha; Martha Cordova; Anil Kishen

INTRODUCTION The current root canal disinfection protocols fail to markedly inactivate bacterial endotoxins from infected root dentin. This study aimed to evaluate the ability of antibacterial photodynamic therapy with chitosan-conjugated rose bengal nanoparticles (CSRBnps) to selectively inactivate endotoxins/lipopolysaccharides (LPSs). METHODS Antimicrobial agents such as calcium hydroxide (Ca[OH]2), chitosan nanoparticles (CSnps), CSRBnps, and methylene blue (MB) were assessed for their ability to neutralize LPSs obtained from Pseudomonas aeruginosa in a time-dependent interaction with/without photoactivation (20 and 40 J/cm(2)). The inflammatory potential of the treated/untreated LPSs was assessed on macrophage cells (RAW 267.4) using nitric oxide- and enzyme-linked immunosorbent assay (tumor necrosis factor α and interleukin-6 expression)-based analysis. These antimicrobials were tested directly on macrophage cells for cytotoxicity using the mitochondrial activity assay and light microscopy. The data were analyzed using 1-way analysis of variance and the Tukey test. RESULTS CSnps were least effective in LPS inactivation. Interluekin-6 expression was reduced only with CSRBnp treatment. CSnps and CSRBnps were completely nontoxic, and MB showed slight toxicity to macrophage cells. Ca(OH)2 was highly cytotoxic (P < .005) even at 30 minutes of exposure. CSRBnps and MB with/without photoactivation significantly inactivated LPSs with reduced nitric oxide and tumor necrosis factor α expression (P < .05). Cell death and detachment after Ca(OH)2 treatment resulted in complete absence of all 3 inflammatory markers. CONCLUSIONS Photodynamically activated CSRBnps caused significant inactivation of endotoxins and the subsequent reduction of all tested inflammatory markers from activated macrophages. Antimicrobial CSRBnps in combination with photodynamic therapy showed the potential to effectively inactivate bacterial endotoxins.


Endocrine Research | 2002

SF1 polymorphisms in the mouse and steroidogenic potential.

Bernard P. Schimmer; Martha Cordova; Jennivine Tsao; Claudia Frigeri

ACTH-resistance in four mutant derivatives of a mouse adrenocortical tumor cell line results from a defect that reduces the activity of steroidogenic factor-1 (SF1) thereby preventing expression of the ACTH receptor and other SF1-dependent genes. The SF1 genes from these mutants contain a sequence difference that changes an Ala to Ser at codon 172. Steroidogenic factor-1S172 represents a polymorphism rather than a spontaneous mutation since the two forms of SF1, SF1A172, and SF1S172, can be traced to the hybrid mouse strain (C57L/J × A/HeJ) from which the original adrenal tumor was derived. The SF1S172 allele is amplified in three of the four mutant clones together with the neighboring genes germ cell nuclear factor and LIM homeobox2. The two forms of SF1 had only modest differences in transcriptional activity in reporter gene assays, suggesting that the SF1 polymorphism per se is not directly responsible for the loss of mc2r expression. Rather, ACTH resistance in this family of adrenocortical tumor cell mutants may be due to a closely linked gene on the SF1S172 allele. Mouse strains with reportedly high steroidogenic capacity (C57Bl/6J, C57Bl/10J) also have the SF1A172 allele while mouse strains with low steroidogenic capacity (C3H/HeJ, DBA/2J) have the SF1S172 allele. These latter observations suggest that the two SF1 alleles also may be markers of steroidogenic potential among mouse strains.


Molecular and Cellular Endocrinology | 2007

A genome-wide assessment of adrenocorticotropin action in the Y1 mouse adrenal tumor cell line.

Bernard P. Schimmer; Martha Cordova; Henry Cheng; Andrew Tsao; Quaid Morris

This report summarizes the genome-wide effects of ACTH on transcript accumulation in mouse adrenal Y1 cells and the relative contributions of the cAMP-, protein kinase C- and Ca(2+)-dependent signaling pathways to these actions of the hormone. ACTH affected the accumulation of 1386 transcripts, a much larger number than previously appreciated. The cAMP signaling pathway accounted for approximately 56% of the ACTH effects whereas the protein kinase C- and Ca(2+)-dependent pathways made smaller contributions to ACTH action. Approximately 38% of the ACTH-affected transcripts could not be assigned to these signaling pathways and thus represent candidates for regulation via other mechanisms. The set of ACTH-regulated transcripts included clusters with functions in steroid metabolism, cell proliferation and alternative splicing. Collectively, our results suggest that Y1 adrenal cells undergo extensive remodeling upon prolonged stimulation with ACTH. The functional implications of ACTH on alternative splicing are explored.


Journal of Bacteriology | 2016

Trk2 Potassium Transport System in Streptococcus mutans and Its Role in Potassium Homeostasis, Biofilm Formation, and Stress Tolerance

Gursonika Binepal; Kamal Gill; Paula J. Crowley; Martha Cordova; L. Jeannine Brady; Dilani B. Senadheera; Dennis G. Cvitkovitch

UNLABELLED Potassium (K(+)) is the most abundant cation in the fluids of dental biofilm. The biochemical and biophysical functions of K(+) and a variety of K(+) transport systems have been studied for most pathogenic bacteria but not for oral pathogens. In this study, we establish the modes of K(+) acquisition in Streptococcus mutans and the importance of K(+) homeostasis for its virulence attributes. The S. mutans genome harbors four putative K(+) transport systems that included two Trk-like transporters (designated Trk1 and Trk2), one glutamate/K(+) cotransporter (GlnQHMP), and a channel-like K(+) transport system (Kch). Mutants lacking Trk2 had significantly impaired growth, acidogenicity, aciduricity, and biofilm formation. [K(+)] less than 5 mM eliminated biofilm formation in S. mutans. The functionality of the Trk2 system was confirmed by complementing an Escherichia coli TK2420 mutant strain, which resulted in significant K(+) accumulation, improved growth, and survival under stress. Taken together, these results suggest that Trk2 is the main facet of the K(+)-dependent cellular response of S. mutans to environment stresses. IMPORTANCE Biofilm formation and stress tolerance are important virulence properties of caries-causing Streptococcus mutans. To limit these properties of this bacterium, it is imperative to understand its survival mechanisms. Potassium is the most abundant cation in dental plaque, the natural environment of S. mutans. K(+) is known to function in stress tolerance, and bacteria have specialized mechanisms for its uptake. However, there are no reports to identify or characterize specific K(+) transporters in S. mutans. We identified the most important system for K(+) homeostasis and its role in the biofilm formation, stress tolerance, and growth. We also show the requirement of environmental K(+) for the activity of biofilm-forming enzymes, which explains why such high levels of K(+) would favor biofilm formation.


Annals of the New York Academy of Sciences | 2003

A Polymorphic Form of Steroidogenic Factor 1 Associated with ACTH Receptor Deficiency in Mouse Adrenal Cell Mutants

Bernard P. Schimmer; Martha Cordova; Jennivine Tsao; Claudia Frigeri

Abstract: We have described a family of adrenocortical tumor cell mutants (including clones OS3, Y6, and 10r9) that are resistant to ACTH because they fail to express the gene encoding the ACTH receptor (MC2R). The MC2R deficiency results from a mutation that impairs the activity of the nuclear receptor steroidogenic factor 1 (SF1) at the MC2R promoter. In this report, we show that ACTH resistance in the mutant clones is associated with a Sf1 gene that has Ser at codon 172 instead of Ala. In two of the three mutant clones, this Sf1 allele is amplified together with flanking DNA from chromosome 2 that includes the genes encoding germ cell nuclear factor and the beta‐type proteosome subunit Psmb7. SF1A172 and SF1S172 exhibit little or no difference in transcriptional activity in SF1‐dependent reporter gene assays, suggesting that SF1S172 per se is not directly responsible for the loss of MC2R expression. Instead, the Sf1S172 allele appears to be a marker of ACTH resistance in this family of adrenocortical tumor cell mutants, possibly reflecting the activity of a neighboring gene.


Molecular and Cellular Endocrinology | 2015

Corticotropin (ACTH) regulates alternative RNA splicing in y1 mouse adrenocortical tumor cells

Bernard P. Schimmer; Martha Cordova

The stimulatory effect of ACTH on gene expression is well documented and is thought to be a major mechanism by which ACTH maintains the functional and structural integrity of the gland. Previously, we showed that ACTH regulates the accumulation of over 1200 transcripts in Y1 adrenal cells, including a cluster with functions in alternative splicing of RNA. On this basis, we postulated that some of the effects of ACTH on the transcription landscape of Y1 cells are mediated by alternative splicing. In this study, we demonstrate that ACTH regulates the alternative splicing of four transcripts - Gnas, Cd151, Dab2 and Tia1. Inasmuch as alternative splicing potentially affects transcripts from more than two-thirds of the mouse genome, we suggest that these findings are representative of a genome-wide effect of ACTH that impacts on the mRNA and protein composition of the adrenal cortex.

Collaboration


Dive into the Martha Cordova's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Latos

University of Toronto

View shared research outputs
Top Co-Authors

Avatar

Aaron D. Schimmer

Ontario Institute for Cancer Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge