Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martha S. Head is active.

Publication


Featured researches published by Martha S. Head.


Journal of Biological Chemistry | 2000

Potent and Selective Nonpeptide Inhibitors of Caspases 3 and 7 Inhibit Apoptosis and Maintain Cell Functionality

Dennis Lee; Scott A. Long; Jerry L. Adams; George K. Chan; Kalindi Vaidya; Terry A. Francis; Kristine Kikly; James D. Winkler; Chiu-Mei Sung; Christine Debouck; Susan Richardson; Mark A. Levy; Walter E. DeWolf; Paul M. Keller; Thaddeus A. Tomaszek; Martha S. Head; M. Dominic Ryan; R. Curtis Haltiwanger; Po-Huang Liang; Cheryl A. Janson; Patrick McDevitt; Kyung Johanson; Nestor O. Concha; Winnie Chan; Sherin S. Abdel-Meguid; Alison M. Badger; Michael W. Lark; Daniel P. Nadeau; Larry J. Suva; Maxine Gowen

Caspases have been strongly implicated to play an essential role in apoptosis. A critical question regarding the role(s) of these proteases is whether selective inhibition of an effector caspase(s) will prevent cell death. We have identified potent and selective non-peptide inhibitors of the effector caspases 3 and 7. The inhibition of apoptosis and maintenance of cell functionality with a caspase 3/7-selective inhibitor is demonstrated for the first time, and suggests that targeting these two caspases alone is sufficient for blocking apoptosis. Furthermore, an x-ray co-crystal structure of the complex between recombinant human caspase 3 and an isatin sulfonamide inhibitor has been solved to 2.8-Å resolution. In contrast to previously reported peptide-based caspase inhibitors, the isatin sulfonamides derive their selectivity for caspases 3 and 7 by interacting primarily with the S2 subsite, and do not bind in the caspase primary aspartic acid binding pocket (S1). These inhibitors blocked apoptosis in murine bone marrow neutrophils and human chondrocytes. Furthermore, in camptothecin-induced chondrocyte apoptosis, cell functionality as measured by type II collagen promoter activity is maintained, an activity considered essential for cartilage homeostasis. These data suggest that inhibiting chondrocyte cell death with a caspase 3/7-selective inhibitor may provide a novel therapeutic approach for the prevention and treatment of osteoarthritis, or other disease states characterized by excessive apoptosis.


Antimicrobial Agents and Chemotherapy | 2002

Discovery of a Novel and Potent Class of FabI-Directed Antibacterial Agents

David J. Payne; William H. Miller; Valerie Berry; John Brosky; Walter J. Burgess; Emile Chen; Walter E. DeWolf; Andrew Fosberry; Rebecca Greenwood; Martha S. Head; Dirk A. Heerding; Cheryl A. Janson; Deborah Dee Jaworski; Paul M. Keller; Peter J. Manley; Terrance D. Moore; Kenneth A. Newlander; Stewart Pearson; Brian J. Polizzi; Xiayang Qiu; Stephen Rittenhouse; Courtney Slater-Radosti; Kevin L. Salyers; Mark A. Seefeld; Martin G. Smyth; Dennis T. Takata; Irene Nijole Uzinskas; Kalindi Vaidya; Nicola G. Wallis; Scott B. Winram

ABSTRACT Bacterial enoyl-acyl carrier protein (ACP) reductase (FabI) catalyzes the final step in each elongation cycle of bacterial fatty acid biosynthesis and is an attractive target for the development of new antibacterial agents. High-throughput screening of the Staphylococcus aureus FabI enzyme identified a novel, weak inhibitor with no detectable antibacterial activity against S. aureus. Iterative medicinal chemistry and X-ray crystal structure-based design led to the identification of compound 4 [(E)-N-methyl-N-(2-methyl-1H-indol-3-ylmethyl)-3-(7-oxo-5,6,7,8-tetrahydro-1,8-naphthyridin-3-yl)acrylamide], which is 350-fold more potent than the original lead compound obtained by high-throughput screening in the FabI inhibition assay. Compound 4 has exquisite antistaphylococci activity, achieving MICs at which 90% of isolates are inhibited more than 500 times lower than those of nine currently available antibiotics against a panel of multidrug-resistant strains of S. aureus and Staphylococcus epidermidis. Furthermore, compound 4 exhibits excellent in vivo efficacy in an S. aureus infection model in rats. Biochemical and genetic approaches have confirmed that the mode of antibacterial action of compound 4 and related compounds is via inhibition of FabI. Compound 4 also exhibits weak FabK inhibitory activity, which may explain its antibacterial activity against Streptococcus pneumoniae and Enterococcus faecalis, which depend on FabK and both FabK and FabI, respectively, for their enoyl-ACP reductase function. These results show that compound 4 is representative of a new, totally synthetic series of antibacterial agents that has the potential to provide novel alternatives for the treatment of S. aureus infections that are resistant to our present armory of antibiotics.


Nature Chemical Biology | 2013

Selective class IIa histone deacetylase inhibition via a nonchelating zinc-binding group

Mercedes Lobera; Kevin P. Madauss; Denise Teotico Pohlhaus; Quentin G Wright; Mark Trocha; Darby Schmidt; Erkan Baloglu; Ryan P. Trump; Martha S. Head; Glenn A. Hofmann; Monique Murray-Thompson; Benjamin Schwartz; Subhas Chakravorty; Zining Wu; Palwinder K. Mander; Laurens Kruidenier; Robert A. Reid; William Burkhart; Brandon J Turunen; James X. Rong; Craig D. Wagner; Mary Moyer; Carrow Wells; Xuan Hong; John T. Moore; Jon D. Williams; Dulce Soler; Shomir Ghosh; Michael A. Nolan

In contrast to studies on class I histone deacetylase (HDAC) inhibitors, the elucidation of the molecular mechanisms and therapeutic potential of class IIa HDACs (HDAC4, HDAC5, HDAC7 and HDAC9) is impaired by the lack of potent and selective chemical probes. Here we report the discovery of inhibitors that fill this void with an unprecedented metal-binding group, trifluoromethyloxadiazole (TFMO), which circumvents the selectivity and pharmacologic liabilities of hydroxamates. We confirm direct metal binding of the TFMO through crystallographic approaches and use chemoproteomics to demonstrate the superior selectivity of the TFMO series relative to a hydroxamate-substituted analog. We further apply these tool compounds to reveal gene regulation dependent on the catalytic active site of class IIa HDACs. The discovery of these inhibitors challenges the design process for targeting metalloenzymes through a chelating metal-binding group and suggests therapeutic potential for class IIa HDAC enzyme blockers distinct in mechanism and application compared to current HDAC inhibitors.


Journal of Chemical Information and Modeling | 2007

Validation Studies of the Site-Directed Docking Program LibDock

Shashidhar N. Rao; Martha S. Head; and Amit Kulkarni; Judith M. LaLonde

The performance of the site-features docking algorithm LibDock has been evaluated across eight GlaxoSmithKline targets as a follow-up to a broad validation study of docking and scoring software (Warren, G. L.; Andrews, W. C.; Capelli, A.; Clarke, B.; Lalonde, J.; Lambert, M. H.; Lindvall, M.; Nevins, N.; Semus, S. F.; Senger, S.; Tedesco, G.; Walls, I. D.; Woolven, J. M.; Peishoff, C. E.; Head, M. S. J. Med. Chem. 2006, 49, 5912-5931). Docking experiments were performed to assess both the accuracy in reproducing the binding mode of the ligand and the retrieval of active compounds in a virtual screening protocol using both the DJD (Diller, D. J.; Merz, K. M., Jr. Proteins 2001, 43, 113-124) and LigScore2 (Krammer, A. K.; Kirchoff, P. D.; Jiang, X.; Venkatachalam, C. M.; Waldman, M. J. Mol. Graphics Modell. 2005, 23, 395-407) scoring functions. This study was conducted using DJD scoring, and poses were rescored using all available scoring functions in the Accelrys LigandFit module, including LigScore2. For six out of eight targets at least 30% of the ligands were docked within a root-mean-square difference (RMSD) of 2.0 A for the crystallographic poses when the LigScore2 scoring function was used. LibDock retrieved at least 20% of active compounds in the top 10% of screened ligands for four of the eight targets in the virtual screening protocol. In both studies the LigScore2 scoring function enhanced the retrieval of crystallographic poses or active compounds in comparison with the results obtained using the DJD scoring function. The results for LibDock accuracy and ligand retrieval in virtual screening are compared to 10 other docking and scoring programs. These studies demonstrate the utility of the LigScore2 scoring function and that LibDock as a feature directed docking method performs as well as docking programs that use genetic/growing and Monte Carlo driven algorithms.


Antimicrobial Agents and Chemotherapy | 2002

Defining and Combating the Mechanisms of Triclosan Resistance in Clinical Isolates of Staphylococcus aureus

Frank Fan; Kang Yan; Nicola G. Wallis; Shannon L. Reed; Terrance D. Moore; Stephen Rittenhouse; Walter E. DeWolf; Jianzhong Huang; Damien McDevitt; William Henry Miller; Mark A. Seefeld; Kenneth A. Newlander; Dalia R. Jakas; Martha S. Head; David J. Payne

ABSTRACT The MICs of triclosan for 31 clinical isolates of Staphylococcus aureus were 0.016 μg/ml (24 strains), 1 to 2 μg/ml (6 strains), and 0.25 μg/ml (1 strain). All the strains for which triclosan MICs were elevated (>0.016 μg/ml) showed three- to fivefold increases in their levels of enoyl-acyl carrier protein (ACP) reductase (FabI) production. Furthermore, strains for which triclosan MICs were 1 to 2 μg/ml overexpressed FabI with an F204C alteration. Binding studies with radiolabeled NAD+ demonstrated that this change prevents the formation of the stable triclosan-NAD+-FabI complex, and both this alteration and its overexpression contributed to achieving MICs of 1 to 2 μg/ml for these strains. Three novel, potent inhibitors of FabI (50% inhibitory concentrations, ≤64 nM) demonstrated up to 1,000-fold better activity than triclosan against the strains for which triclosan MICs were elevated. None of the compounds tested from this series formed a stable complex with NAD+-FabI. Consequently, although the overexpression of wild-type FabI gave rise to an increase in the MICs, as expected, overexpression of FabI with an F204C alteration did not cause an additional increase in resistance. Therefore, this work identifies the mechanisms of triclosan resistance in S. aureus, and we present three compounds from a novel chemical series of FabI inhibitors which have excellent activities against both triclosan-resistant and -sensitive clinical isolates of S. aureus.


Protein Science | 2009

Blind docking of pharmaceutically relevant compounds using RosettaLigand

Ian W. Davis; Kaushik Raha; Martha S. Head; David Baker

It is difficult to properly validate algorithms that dock a small molecule ligand into its protein receptor using data from the public domain: the predictions are not blind because the correct binding mode is already known, and public test cases may not be representative of compounds of interest such as drug leads. Here, we use private data from a real drug discovery program to carry out a blind evaluation of the RosettaLigand docking methodology and find that its performance is on average comparable with that of the best commercially available current small molecule docking programs. The strength of RosettaLigand is the use of the Rosetta sampling methodology to simultaneously optimize protein sidechain, protein backbone and ligand degrees of freedom; the extensive benchmark test described here identifies shortcomings in other aspects of the protocol and suggests clear routes to improving the method.


Chemistry & Biology | 2011

Discovery and Characterization of a Cell-Permeable, Small-Molecule c-Abl Kinase Activator that Binds to the Myristoyl Binding Site

Jingsong Yang; Nino Campobasso; Mangatt P. Biju; Kelly E. Fisher; Xiao-Qing Pan; Josh Cottom; Sarah Galbraith; Thau Ho; Hong Zhang; Xuan Hong; Paris Ward; Glenn A. Hofmann; Brett Siegfried; Francesca Zappacosta; Yoshiaki Washio; Ping Cao; Junya Qu; Sophie M. Bertrand; Da-Yuan Wang; Martha S. Head; Hu Li; Sheri L. Moores; Zhihong Lai; Kyung Johanson; George Burton; Connie L. Erickson-Miller; Graham L. Simpson; Peter J. Tummino; Robert A. Copeland; Allen Oliff

c-Abl kinase activity is regulated by a unique mechanism involving the formation of an autoinhibited conformation in which the N-terminal myristoyl group binds intramolecularly to the myristoyl binding site on the kinase domain and induces the bending of the αI helix that creates a docking surface for the SH2 domain. Here, we report a small-molecule c-Abl activator, DPH, that displays potent enzymatic and cellular activity in stimulating c-Abl activation. Structural analyses indicate that DPH binds to the myristoyl binding site and prevents the formation of the bent conformation of the αI helix through steric hindrance, a mode of action distinct from the previously identified allosteric c-Abl inhibitor, GNF-2, that also binds to the myristoyl binding site. DPH represents the first cell-permeable, small-molecule tool compound for c-Abl activation.


Bioorganic & Medicinal Chemistry Letters | 2009

Design and synthesis of orally bioavailable serum and glucocorticoid-regulated kinase 1 (SGK1) inhibitors

Marlys Hammond; David G. Washburn; Tram H. Hoang; Sharada Manns; James S. Frazee; Hiroko Nakamura; Jaclyn R. Patterson; Walter Trizna; Charlene Wu; Leonard M. Azzarano; Rakesh Nagilla; Melanie Nord; Rebecca Trejo; Martha S. Head; Baoguang Zhao; Angela Smallwood; Kendra E. Hightower; Nicholas J. Laping; Christine G. Schnackenberg; Scott K. Thompson

The lead serum and glucocorticoid-related kinase 1 (SGK1) inhibitors 4-(5-phenyl-1H-pyrrolo[2,3-b]pyridin-3-yl)benzoic acid (1) and {4-[5-(2-naphthalenyl)-1H-pyrrolo[2,3-b]pyridin-3-yl]phenyl}acetic acid (2) suffer from low DNAUC values in rat, due in part to formation and excretion of glucuronic acid conjugates. These PK/glucuronidation issues were addressed either by incorporating a substituent on the 3-phenyl ring ortho to the key carboxylate functionality of 1 or by substituting on the group in between the carboxylate and phenyl ring of 2. Three of these analogs have been identified as having good SGK1 inhibition potency and have DNAUC values suitable for in vivo testing.


Protein Science | 2007

Crystal structure of the kinase domain of serum and glucocorticoid-regulated kinase 1 in complex with AMP-PNP

Baoguang Zhao; Ruth Lehr; Angela Smallwood; Thau Ho; Kathleen Maley; Tanya Randall; Martha S. Head; Kristin K. Koretke; Christine G. Schnackenberg

Serum and glucocorticoid‐regulated kinase 1 (SGK1) is a serine/threonine protein kinase of the AGC family which participates in the control of epithelial ion transport and is implicated in proliferation and apoptosis. We report here the 1.9 Å crystal structure of the catalytic domain of inactive human SGK1 in complex with AMP–PNP. SGK1 exists as a dimer formed by two intermolecular disulfide bonds between Cys258 in the activation loop and Cys193. Although most of the SGK1 structure closely resembles the common protein kinase fold, the structure around the active site is unique when compared to most protein kinases. The αC helix is not present in this inactive form of SGK1 crystal structure; instead, the segment corresponding to the C helix forms a β‐strand that is stabilized by the N‐terminal segment of the activation loop through a short antiparallel β‐sheet. Since the differences from other kinases occur around the ATP binding site, this structure can provide valuable insight into the design of selective and highly potent ATP‐competitive inhibitors of SGK1 kinase.


Journal of Computer-aided Molecular Design | 2012

Computer-aided molecular design under the SWOTlight

Darren V. S. Green; Andrew R. Leach; Martha S. Head

Within the computational chemistry community at GSK, the authors of this perspective are collectively referred to as ‘‘that DAM group’’, directors of computational chemistry groups in the Computational and Structural Chemistry department. Amongst them, the authors have more than 75 years combined experience in computer-aided drug discovery and more than 30 years combined experience as comp. chem. group leaders. We also belong to that generation of scientists whose careers are approximately the same age as this journal; indeed, one of us published his first scientific paper in the first issue of this JCAMD. Our reflections in this perspective are based in part on a Strengths, Weaknesses, Opportunities, Threats (SWOT) analysis undertaken by the computational chemistry groups at GSK. Our analysis was largely intended for internal consumption as part of our annual objectives-setting process, but we believe that the application of the SWOT approach to the wider discipline of computer-aided molecular design would also be an instructive exercise. The rest of this perspective will be organized based on a re-ordering of the SWOT themes: Threats, Weaknesses, Strengths, Opportunities. As we reflect back over the past 25 years of our careers as practicing computational chemists, what has been achieved by our scientific community? Has progress been made? How will the discipline change over the next 25 years?

Collaboration


Dive into the Martha S. Head's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge