Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marthe J. Howard is active.

Publication


Featured researches published by Marthe J. Howard.


Molecular Cell | 2003

PKA, PKC, and the protein phosphatase 2A influence HAND factor function: a mechanism for tissue-specific transcriptional regulation.

Beth A. Firulli; Marthe J. Howard; Jennifer R. Mcdaid; Leanne McIlreavey; Karen M Dionne; Victoria E. Centonze; Peter Cserjesi; David M. Virshup; Anthony B. Firulli

The bHLH factors HAND1 and HAND2 are required for heart, vascular, neuronal, limb, and extraembryonic development. Unlike most bHLH proteins, HAND factors exhibit promiscuous dimerization properties. We report that phosphorylation/dephosphorylation via PKA, PKC, and a specific heterotrimeric protein phosphatase 2A (PP2A) modulates HAND function. The PP2A targeting-subunit B56delta specifically interacts with HAND1 and -2, but not other bHLH proteins. PKA and PKC phosphorylate HAND proteins in vivo, and only B56delta-containing PP2A complexes reduce levels of HAND1 phosphorylation. During RCHOI trophoblast stem cell differentiation, B56delta expression is downregulated and HAND1 phosphorylation increases. Mutations in phosphorylated residues result in altered HAND1 dimerization and biological function. Taken together, these results suggest that site-specific phosphorylation regulates HAND factor functional specificity.


Developmental Biology | 2008

Conditional Deletion of Hand2 Reveals Critical Functions in Neurogenesis and Cell Type-specific Gene Expression for Development of Neural Crest-derived Noradrenergic Sympathetic Ganglion Neurons

Tyler J. Hendershot; Hongbin Liu; David E. Clouthier; Iain T. Shepherd; Eva Coppola; Michèle Studer; Anthony B. Firulli; Douglas L. Pittman; Marthe J. Howard

Neural crest-derived structures that depend critically upon expression of the basic helix-loop-helix DNA binding protein Hand2 for normal development include craniofacial cartilage and bone, the outflow tract of the heart, cardiac cushion, and noradrenergic sympathetic ganglion neurons. Loss of Hand2 is embryonic lethal by E9.5, obviating a genetic analysis of its in-vivo function. We have overcome this difficulty by specific deletion of Hand2 in neural crest-derived cells by crossing our line of floxed Hand2 mice with Wnt1-Cre transgenic mice. Our analysis of Hand2 knock-out in neural crest-derived cells reveals effects on development in all neural crest-derived structures where Hand2 is expressed. In the autonomic nervous system, conditional disruption of Hand2 results in a significant and progressive loss of neurons as well as a significant loss of TH expression. Hand2 affects generation of the neural precursor pool of cells by affecting both the proliferative capacity of the progenitors as well as affecting expression of Phox2a and Gata3, DNA binding proteins important for the cell autonomous development of noradrenergic neurons. Our data suggest that Hand2 is a multifunctional DNA binding protein affecting differentiation and cell type-specific gene expression in neural crest-derived noradrenergic sympathetic ganglion neurons. Hand2 has a pivotal function in a non-linear cross-regulatory network of DNA binding proteins that affect cell autonomous control of differentiation and cell type-specific gene expression.


The Journal of Neuroscience | 2004

Brain-Derived Neurotrophic Factor and trkB Signaling in Parasympathetic Neurons: Relevance to Regulating α7-Containing Nicotinic Receptors and Synaptic Function

Xiangdong Zhou; Qiang Nai; Min Chen; Jason D. Dittus; Marthe J. Howard; Joseph F. Margiotta

Parasympathetic neurons do not require neurotrophins for survival and are thought to lack high-affinity neurotrophin receptors (i.e., trks). We report here, however, that mRNAs encoding both brain-derived neurotrophic factor (BDNF) and its high-affinity receptor tropomyosin-related kinase B (trkB) are expressed in the parasympathetic chick ciliary ganglion (CG) and that BDNF-like protein is present in the ganglion and in the iris, an important peripheral target of ciliary neurons. Moreover, CG neurons express surface trkB and exogenous BDNF not only initiates trk-dependent signaling, but also alters nicotinic acetylcholine receptor (nAChR) expression and synaptic transmission. In particular, BDNF applied to CG neurons rapidly activates cAMP-dependent response element-binding protein (CREB), and over the long-term selectively upregulates expression of α7-subunit-containing, homomeric nAChRs (α7-nAChRs), increasing α7-subunit mRNA levels, α7-nAChR surface sites, and α7-nAChR-mediated whole-cell currents. At nicotinic synapses formed on CG neurons in culture, brief and long-term BDNF treatments also increase the frequency of spontaneous EPSCs, most of which are mediated by heteromeric nAChRs containing α3, α5, β4, and β2 subunits (α3*-nAChRs) with a minor contribution from α7-nAChRs. Our findings demonstrate unexpected roles for BDNF-induced, trk-dependent signaling in CG neurons, both in regulating expression of α7-nAChRs and in enhancing transmission at α3*-nAChR-mediated synapses. The presence of BDNF-like protein in CG and iris target coupled with that of functional trkB on CG neurons raise the possibility that signals generated by endogenous BDNF similarly influence α7-nAChRs and nicotinic synapses in vivo.


Developmental Dynamics | 2007

Expression of Hand2 is sufficient for neurogenesis and cell type–specific gene expression in the enteric nervous system

Tyler J. Hendershot; Hongbin Liu; Anjali A. Sarkar; David R. Giovannucci; David E. Clouthier; Makoto Abe; Marthe J. Howard

The basic helix‐loop‐helix DNA binding protein Hand2 is expressed in neural crest–derived precursors of enteric neurons and has been shown to affect both neurogenesis and neurotransmitter specification of noradrenergic sympathetic ganglion neurons. In the current study, our goal was to determine whether Hand2 affects neurogenesis and/or expression of vasoactive intestinal polypeptide and choline acetyltransferase in developing enteric neurons. Gain‐of‐function of Hand2 in HNK‐1+ immmunoselected precursor cells resulted in increased neurogenesis. The number of neurons expressing vasoactive intestinal polypeptide increased in response to Hand2 overexpression although choline acetyltransferase was not affected. Targeted deletion of Hand2 in neural crest cells resulted in loss of all neurons expressing vasoactive intestinal polypeptide along the length of the gastrointestinal tract, patterning defects in the myenteric plexus of the stomach, and altered number and morphology of neurons expressing TH. Our data demonstrate that expression of Hand2 is sufficient and necessary for neurogenesis and expression of a subset of cell type‐specific markers in the developing enteric nervous system. Developmental Dynamics 236:93–105, 2007.


Development | 2011

Downregulation of Dlx5 and Dlx6 expression by Hand2 is essential for initiation of tongue morphogenesis

Francie E. Barron; Crystal Woods; Katherine Kuhn; Jonathan Bishop; Marthe J. Howard; David E. Clouthier

Lower jaw development is a complex process in which multiple signaling cascades establish a proximal-distal organization. These cascades are regulated both spatially and temporally and are constantly refined through both induction of normal signals and inhibition of inappropriate signals. The connective tissue of the tongue arises from cranial neural crest cell-derived ectomesenchyme within the mandibular portion of the first pharyngeal arch and is likely to be impacted by this signaling. Although the developmental mechanisms behind later aspects of tongue development, including innervation and taste acquisition, have been elucidated, the early patterning signals driving ectomesenchyme into a tongue lineage are largely unknown. We show here that the basic helix-loop-helix transcription factor Hand2 plays key roles in establishing the proximal-distal patterning of the mouse lower jaw, in part through establishing a negative-feedback loop in which Hand2 represses Dlx5 and Dlx6 expression in the distal arch ectomesenchyme following Dlx5- and Dlx6-mediated induction of Hand2 expression in the same region. Failure to repress distal Dlx5 and Dlx6 expression results in upregulation of Runx2 expression in the mandibular arch and the subsequent formation of aberrant bone in the lower jaw along with proximal-distal duplications. In addition, there is an absence of lateral lingual swelling expansion, from which the tongue arises, resulting in aglossia. Hand2 thus appears to establish a distal mandibular arch domain that is conducive for lower jaw development, including the initiation of tongue mesenchyme morphogenesis.


Developmental Biology | 2003

HAND2 synergistically enhances transcription of dopamine-β-hydroxylase in the presence of Phox2a

Haiming Xu; Anthony B. Firulli; Xiaotong Zhang; Marthe J. Howard

Noradrenergic neuronal identity and differentiation are controlled by cascades of transcription factors acting downstream of BMP4, including the basic helix-loop-helix DNA binding protein HAND2 and the homeodomain factor Phox2a. Dopamine-beta-hydroxylase (DBH) is the penultimate enzyme required for synthesis of norepinephrine and is thus a noradrenergic cell type-specific marker. We have examined the interaction of HAND2 and Phox2a at the DBH promoter. Using transient transfection of P19 or NT-2 cells, HAND2 is shown to synergistically enhance Phox2a-driven transcriptional activity at the DBH promoter, an effect that is enhanced by cAMP. While mutation of the Phox2a homeodomain binding sites HD1, HD2, and HD3 results in the loss of HAND2/Phox2a transactivation of DBH, it is the interaction of HAND2/Phox2a at the CRE/AP1-HD1/2 domains in the DBH enhancer that are required for synergistic activation by HAND2. We find that HAND2 functions as a transcriptional activator without directly binding to E-box sequences in the DBH promoter, suggesting that HAND2-mediated DBH activity occurs by protein-protein interactions with other transcriptional regulators. Although we were unable to detect interaction of HAND2 and Phox2a in IP/Western blots, HAND2 synergistic activation of DBH is blocked by E1A, suggesting that HAND2 interacts with CBP (cAMP response element binding protein) in this transcriptional complex. In the presence of the putative HAND2 dimerization partner, E12, synergistic activation of DBH transcription is titrated away, suggesting that HAND2 does not functionally dimerize with E12 in the DBH transcription complex. Our data suggest that HAND2 regulates cell type-specific expression of norepinephrine in concert with Phox2a by a novel mechanism.


Developmental Biology | 2009

The bHLH transcription factor Hand2 is essential for the maintenance of noradrenergic properties in differentiated sympathetic neurons

Mirko Schmidt; Shengyin Lin; Manuela Pape; Uwe Ernsberger; Matthias Stanke; Kazuto Kobayashi; Marthe J. Howard; Hermann Rohrer

The basic helix-loop-helix transcription factor Hand2 is essential for the proliferation and noradrenergic differentiation of sympathetic neuron precursors during development. Here we address the function of Hand2 in postmitotic, differentiated sympathetic neurons. Knockdown of endogenous Hand2 in cultured E12 chick sympathetic neurons by siRNA results in a significant (about 60%) decrease in the expression of the noradrenergic marker genes dopamine-beta-hydroxylase (DBH) and tyrosine hydroxylase (TH). In contrast, expression of the pan-neuronal genes TuJ1, HuC and SCG10 was not affected. To analyze the in vivo role of Hand2 in differentiated sympathetic neurons we used mice harboring a conditional Hand2-null allele and excised the gene by expression of Cre recombinase under control of the DBH promotor. Mouse embryos homozygous for Hand2 gene deletion showed decreased sympathetic neuron number and TH expression was strongly reduced in the residual neuron population. The in vitro Hand2 knockdown also enhances the CNTF-induced expression of the cholinergic marker genes vesicular acetylcholine transporter (VAChT) and choline acetyltransferase (ChAT). Taken together, these findings demonstrate that the Hand2 transcription factor plays a key role in maintaining noradrenergic properties in differentiated neurons.


Development | 2011

Targeted deletion of Hand2 in enteric neural precursor cells affects its functions in neurogenesis, neurotransmitter specification and gangliogenesis, causing functional aganglionosis

Jun Lei; Marthe J. Howard

Targeted deletion of the bHLH DNA-binding protein Hand2 in the neural crest, impacts development of the enteric nervous system (ENS), possibly by regulating the transition from neural precursor cell to neuron. We tested this hypothesis by targeting Hand2 deletion in nestin-expressing neural precursor (NEP) cells. The mutant mice showed abnormal ENS development, resulting in lethal neurogenic pseudo-obstruction. Neurogenesis of neurons derived from NEP cells identified a second nestin non-expressing neural precursor (NNEP) cell in the ENS. There was substantial compensation for the loss of neurons derived from the NEP pool by the NNEP pool but this was insufficient to abrogate the negative impact of Hand2 deletion. Hand2-mediated regulation of proliferation affected both neural precursor and neuron numbers. Differentiation of glial cells derived from the NEP cells was significantly decreased with no compensation from the NNEP pool of cells. Our data indicate differential developmental potential of NEPs and NNEPs; NNEPs preferentially differentiate as neurons, whereas NEPs give rise to both neurons and glial cells. Deletion of Hand2 also resulted in complete loss of NOS and VIP and a significant decrease in expression of choline acetyltransferase and calretinin, demonstrating a role for Hand2 in neurotransmitter specification and/or expression. Loss of Hand2 resulted in a marked disruption of the developing neural network, exemplified by lack of a myenteric plexus and extensive overgrowth of fibers. Thus, Hand2 is essential for neurogenesis, neurotransmitter specification and neural network patterning in the developing ENS.


Journal of Biological Chemistry | 1998

Insulin Stimulates pp120 Endocytosis in Cells Co-expressing Insulin Receptors

Curtis V. Choice; Marthe J. Howard; Matthew N. Poy; Mark H. Hankin; Sonia M. Najjar

pp120, a substrate of the insulin receptor tyrosine kinase, is a plasma membrane glycoprotein that is expressed in the hepatocyte as two spliced isoforms differing by the presence (full-length) or absence (truncated) of most of the intracellular domain including all phosphorylation sites. Co-expression of full-length pp120, but not its phosphorylation-defective isoforms, increased receptor-mediated insulin endocytosis and degradation in NIH 3T3 fibroblasts. We, herein, examined whether internalization of pp120 is required to mediate its effect on insulin endocytosis. The amount of full-length pp120 expressed at the cell surface membrane, as measured by biotin labeling, markedly decreased in response to insulin only when insulin receptors were co-expressed. In contrast, when phosphorylation-defective pp120 mutants were co-expressed, the amount of pp120 expressed at the cell surface did not decrease in response to insulin. Indirect immunofluorescence analysis revealed that upon insulin treatment of cells co-expressing insulin receptors, full-length, but not truncated, pp120 co-localized with α-adaptin in the adaptor protein complex that anchors endocytosed proteins to clathrin-coated pits. This suggests that full-length pp120 is part of a complex of proteins required for receptor-mediated insulin endocytosis and that formation of this complex is regulated by insulin-induced pp120 phosphorylation by the receptor tyrosine kinase. In vitro GST binding assays and co-immunoprecipitation experiments in intact cells further revealed that pp120 did not bind directly to the insulin receptor and that its association with the receptor may be mediated by other cellular proteins.


Developmental Biology | 2010

Targeted deletion of Hand2 in cardiac neural crest-derived cells influences cardiac gene expression and outflow tract development

Kristen L. Holler; Tyler J. Hendershot; Sophia E. Troy; Joshua W. Vincentz; Anthony B. Firulli; Marthe J. Howard

The basic helix-loop-helix DNA binding protein Hand2 has critical functions in cardiac development both in neural crest-derived and mesoderm-derived structures. Targeted deletion of Hand2 in the neural crest has allowed us to genetically dissect Hand2-dependent defects specifically in outflow tract and cardiac cushion independent of Hand2 functions in mesoderm-derived structures. Targeted deletion of Hand2 in the neural crest results in misalignment of the aortic arch arteries and outflow tract, contributing to development of double outlet right ventricle (DORV) and ventricular septal defects (VSD). These neural crest-derived developmental anomalies are associated with altered expression of Hand2-target genes we have identified by gene profiling. A number of Hand2 direct target genes have been identified using ChIP and ChIP-on-chip analyses. We have identified and validated a number of genes related to cell migration, proliferation/cell cycle and intracellular signaling whose expression is affected by Hand2 deletion in the neural crest and which are associated with development of VSD and DORV. Our data suggest that Hand2 is a multifunctional DNA binding protein affecting expression of target genes associated with a number of functional interactions in neural crest-derived cells required for proper patterning of the outflow tract, generation of the appropriate number of neural crest-derived cells for elongation of the conotruncus and cardiac cushion organization. Our genetic model has made it possible to investigate the molecular genetics of neural crest contributions to outflow tract morphogenesis and cell differentiation.

Collaboration


Dive into the Marthe J. Howard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hermann Rohrer

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Francie Hyndman

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge