Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marti F.A. Bierhuizen is active.

Publication


Featured researches published by Marti F.A. Bierhuizen.


Nature Cell Biology | 2010

MicroRNA-199b targets the nuclear kinase Dyrk1a in an auto-amplification loop promoting calcineurin/NFAT signalling

Paula A. da Costa Martins; Kanita Salic; Monika M. Gladka; Anne-Sophie Armand; Stefanos Leptidis; Hamid el Azzouzi; Arne Hansen; Christina J. Coenen-De Roo; Marti F.A. Bierhuizen; Roel van der Nagel; Joyce van Kuik; Roel A. de Weger; Alain de Bruin; Gianluigi Condorelli; Maria L. Arbonés; Thomas Eschenhagen; Leon J. De Windt

MicroRNAs (miRs) are a class of single-stranded, non-coding RNAs of about 22 nucleotides in length. Increasing evidence implicates miRs in myocardial disease processes. Here we show that miR-199b is a direct calcineurin/NFAT target gene that increases in expression in mouse and human heart failure, and targets the nuclear NFAT kinase dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1a (Dyrk1a), constituting a pathogenic feed forward mechanism that affects calcineurin-responsive gene expression. Mutant mice overexpressing miR-199b, or haploinsufficient for Dyrk1a, are sensitized to calcineurin/NFAT signalling or pressure overload and show stress-induced cardiomegaly through reduced Dyrk1a expression. In vivo inhibition of miR-199b by a specific antagomir normalized Dyrk1a expression, reduced nuclear NFAT activity and caused marked inhibition and even reversal of hypertrophy and fibrosis in mouse models of heart failure. Our results reveal that microRNAs affect cardiac cellular signalling and gene expression, and implicate miR-199b as a therapeutic target in heart failure.


Cardiovascular Research | 2012

Biology of cardiac sodium channel Nav1.5 expression

Martin B. Rook; Melvin M. Evers; Marc A. Vos; Marti F.A. Bierhuizen

Na(v)1.5, the pore forming α-subunit of the voltage-dependent cardiac Na(+) channel, is an integral membrane protein involved in the initiation and conduction of action potentials. Mutations in the gene-encoding Na(v)1.5, SCN5A, have been associated with a variety of arrhythmic disorders, including long QT, Brugada, and sick sinus syndromes as well as progressive cardiac conduction defect and atrial standstill. Moreover, alterations in the Na(v)1.5 expression level and/or sodium current density have been frequently noticed in acquired cardiac disorders, such as heart failure. The molecular mechanisms underlying these alterations are poorly understood, but are considered essential for conception of arrhythmogenesis and the development of therapeutic strategies for prevention or treatment of arrhythmias. The unravelling of such mechanisms requires critical molecular insight into the biology of Na(v)1.5 expression and function. Therefore, the aim of this review is to provide an up-to-date account of molecular determinants of normal Na(v)1.5 expression and function. The parts of the Na(v)1.5 life cycle that are discussed include (i) regulatory aspects of the SCN5A gene and transcript structure, (ii) the nature, molecular determinants, and functional consequences of Na(v)1.5 post-translational modifications, and (iii) the role of Na(v)1.5 interacting proteins in cellular trafficking. The reviewed studies have provided valuable information on how the Na(v)1.5 expression level, localization, and biophysical properties are regulated, but also revealed that our understanding of the underlying mechanisms is still limited.


European Journal of Heart Failure | 2010

Heterogeneous Connexin43 distribution in heart failure is associated with dispersed conduction and enhanced susceptibility to ventricular arrhythmias

Mohamed Boulaksil; Stephan K.G. Winckels; Markus A. Engelen; Mera Stein; Toon A.B. van Veen; John A. Jansen; André C. Linnenbank; Marti F.A. Bierhuizen; W. Antoinette Groenewegen; Matthijs F.M. van Oosterhout; J. H. Kirkels; Nicolaas de Jonge; András Varró; Marc A. Vos; Jacques M.T. de Bakker; Harold V.M. van Rijen

Sudden arrhythmogenic cardiac death is a major cause of mortality in patients with congestive heart failure (CHF). To investigate determinants of the increased arrhythmogenic susceptibility, we studied cardiac remodelling and arrhythmogenicity in CHF patients and in a mouse model of chronic pressure overload.


Cardiovascular Research | 2000

Characterization of the rat connexin40 promoter : two Sp1/Sp3 binding sites contribute to transcriptional activation

Marti F.A. Bierhuizen; Shirley C.M. van Amersfoorth; W. Antoinette Groenewegen; Saskia Vliex; Habo J. Jongsma

OBJECTIVES The gap junction protein connexin40 (Cx40) is differentially expressed during embryonic development and in adult tissues, for which the molecular basis is unknown. In order to elucidate the molecular mechanisms controlling Cx40 expression, we set out to map and characterize its promoter. METHODS The transcriptional activity of individual rat Cx40 (rCx40)-derived promoter fragments fused to the luciferase reporter gene was determined by transfection/reporter assays in Cx40-expressing (A7r5, rat smooth muscle embryonic thoracic aorta cells, and BWEM, v-myc transformed rat fetal cardiomyocytes) and Cx40-nonexpressing cells (N2A, mouse neuroblastoma cells). The nature of DNA-protein interactions was investigated by a combination of standard electrophoretic-mobility-shift assays (EMSA) and EMSA/antibody supershift assays. RESULTS Quantification of luciferase activity in cell lysates revealed that a 235-base-pair fragment, in between map positions -150 and +85 relative to the transcription initiation site, is able to provide for a significant level of transcription in both Cx40-expressing (A7r5, BWEM) and -nonexpressing (N2A) cells. These results indicate that this region contains the basal promoter but is not sufficient to completely determine the endogenous Cx40-expression pattern within these cell types. In search for the responsible transcriptional regulatory element(s), additional segments of the (-150, +85) region were deleted and the remaining fragments were tested for transcriptional activity. These studies established that the regions in between map positions (-96, -71) and (+58, +85) contribute to promoter activity. EMSA with these regions revealed that predominantly two DNA-protein complexes are formed upon incubation with either A7r5, BWEM or N2A nuclear extracts, which could be both inhibited by including excess oligonucleotide containing the Sp1 consensus binding site in the binding reaction. Purified recombinant human Sp1 provided also for a shift in the EMSA using these promoter regions as target fragments. When the DNA-protein complexes formed with nuclear extract were subsequently incubated with either an anti-Sp1 or an anti-Sp3 antibody clear supershifts in the EMSA were obtained, indicating Sp1 and Sp3 binding to both the (-98, -64) and (+53, +87) regions. The introduction of mutations within the core sequence of the putative Sp1/Sp3 binding sites present in these regulatory elements reduced the level of transcriptional activity and abrogated Sp1/Sp3 binding to these sites. CONCLUSION The results indicate that at least two Sp1/Sp3 binding sites in the rCx40 promoter contribute to the transcriptional activation of its gene in cultured cells.


Journal of Molecular and Cellular Cardiology | 2008

In calcineurin-induced cardiac hypertrophy expression of Nav1.5, Cx40 and Cx43 is reduced by different mechanisms

Marti F.A. Bierhuizen; Mohamed Boulaksil; Leonie van Stuijvenberg; Roel van der Nagel; Anita T. Jansen; Nancy Mutsaers; Cansu Yildirim; Toon A.B. van Veen; Leon J. De Windt; Marc A. Vos; Harold V.M. van Rijen

Alterations in expression levels of Na(v)1.5, Cx43 and Cx40 have been frequently reported in cardiac disease and are associated with the development of arrhythmias, but little is known about the underlying molecular mechanisms. In this study we investigated electrical conduction and expression of Na(v)1.5, Cx43 and Cx40 in hearts of transgenic mice overexpressing a constitutively active form of calcineurin (MHC-CnA). ECG recordings showed that atrial, atrioventricular and ventricular activation were significantly prolonged in MHC-CnA hearts as compared to wildtype (WT) littermates. Epicardial activation and arrhythmia susceptibility analysis revealed increased ventricular activation thresholds and arrhythmia vulnerability. Moreover, epicardial ventricular activation patterns in MHC-CnA mice were highly discontinuous with multiple areas of block. These impaired conduction properties were associated with severe reductions in Na(v)1.5, Cx43 and Cx40 protein expression in MHC-CnA hearts as visualized by immunohistochemistry and immunoblotting. Real-time RT-PCR demonstrated that the decreased protein levels for Na(v)1.5 and Cx40, but not for Cx43, were accompanied by corresponding reductions at the RNA level. Cx43 RNA isoform analysis indicated that the reduction in Cx43 protein expression is caused by a post-transcriptional mechanism rather than by RNA isoform switching. In contrast, RNA isoform analysis for Cx40 and Na(v)1.5 provided additional evidence that in calcineurin-induced hypertrophy the downregulation of these proteins originates at the transcriptional level. These results provide the molecular rationale for Na(v)1.5, Cx43 and Cx40 downregulation in this model of hypertrophy and failure and the development of the pro-arrhythmic substrate.


PLOS ONE | 2014

Changes in Cx43 and NaV1.5 Expression Precede the Occurrence of Substantial Fibrosis in Calcineurin-Induced Murine Cardiac Hypertrophy

Magda S.C. Fontes; Antonia J. A. Raaijmakers; Tessa van Doorn; Bart Kok; Sylvia Nieuwenhuis; Roel van der Nagel; Marc A. Vos; Teun P. de Boer; Harold V.M. van Rijen; Marti F.A. Bierhuizen

In mice, the calcium-dependent phosphatase calcineurin A (CnA) induces a transcriptional pathway leading to pathological cardiac hypertrophy. Interestingly, induction of CnA has been frequently noticed in human hypertrophic and failing hearts. Independently, the arrhythmia vulnerability of such hearts has been regularly associated with remodeling of parameters determining electrical conduction (expression level of connexin43 (Cx43) and NaV1.5, connective tissue architecture), for which the precise molecular basis and sequence of events is still unknown. Recently, we observed reduced Cx43 and NaV1.5 expression in 4-week old mouse hearts, overexpressing a constitutively active form of CnA (MHC-CnA model), but the order of events is still unknown. Therefore, three key parameters of conduction (Cx43, NaV1.5 and connective tissue expression) were characterized in MHC-CnA ventricles versus wild-type (WT) during postnatal development on a weekly basis. At postnatal week 1, CnA overexpression induced cardiac hypertrophy in MHC-CnA. Moreover, protein and RNA levels of both Cx43 and NaV1.5 were reduced by at least 50% as compared to WT. Cx43 immunoreactive signal was reduced at week 2 in MHC-CnA. At postnatal week 3, Cx43 was less phosphorylated and RNA level of Cx43 normalized to WT values, although the protein level was still reduced. Additionally, MHC-CnA hearts displayed substantial fibrosis relative to WT, which was accompanied by increased RNA levels for genes previously associated with fibrosis such as Col1a1, Col1a2, Col3a1, Tgfb1, Ctgf, Timp1 and microRNA miR-21. In MHC-CnA, reduction in Cx43 and NaV1.5 expression thus coincided with overexpression of CnA and hypertrophy development and preceded significant presence of fibrosis. At postnatal week 4 the alterations in conductional parameters observed in the MHC-CnA model lead to abnormal conduction and arrhythmias, similar to those observed in cardiac remodeling in heart failure patients. The MHC-CnA model, therefore, provides for a unique model to resolve the molecular origin of conductional remodeling in detail.


DNA and Cell Biology | 2010

Alternative Promoter Usage and Splicing of the Human SCN5A Gene Contribute to Transcript Heterogeneity

Leonie van Stuijvenberg; Cansu Yildirim; Bart Kok; Toon A.B. van Veen; András Varró; Stephan K.G. Winckels; Marc A. Vos; Marti F.A. Bierhuizen

The sodium channel isoform Na(v)1.5 mediates sodium current, excitability, and electrical conduction in the human heart. Recent studies have indicated alternative splicing within the protein-coding portion of its gene, SCN5A, as a mechanism to generate diversity in Na(v)1.5 protein structure and function. In the present study we identified several novel SCN5A transcripts in human heart, displaying distinct 5′-untranslated regions but identical protein-coding sequences. These transcripts originated from the splicing of alternative exons 1 (designated 1A, 1B, 1C, and 1D) to the translational start codon-containing exon 2, and were preferentially expressed in the heart as compared to other tissues. Comparison of their expression level between adult and fetal heart demonstrated that exon 1C- and 1D-derived sequences were more prominent in adult than in fetal heart. Two new promoters (designated P2 and P3) for the SCN5A gene were identified and functionally characterized in myocardial- and nonmyocardial-derived cell lines. Translation of the transcript containing exon 1D-derived sequences proved to be significantly impaired in these cell lines, which could be restored by mutation of an upstream translational start codon. These results implicate the usage of alternative promoters and 5′-untranslated regions as new mechanisms in the regulation of human Na(v)1.5 expression.


Europace | 2012

Reduced connexin40 protein expression in the right atrial appendage of patients bearing the minor connexin40 allele (−44 G → A)

Sevasti-Maria Chaldoupi; Lisette E. G. Hubens; Daan A. Smit Duijzentkunst; Leonie van Stuijvenberg; Marti F.A. Bierhuizen; Egidius E.H.L. van Aarnhem; Marcel R. Nelen; Jacques M.T. de Bakker; Richard N.W. Hauer; Harold V.M. van Rijen; Peter Loh; Toon A.B. van Veen

AIMS The occurrence of connexin40 (Cx40) minor polymorphism (-44 G → A) was increased in patients with idiopathic atrial fibrillation (AF), although its effect on atrial Cx40 protein expression is unknown. We aimed to evaluate whether alterations in Cx40 are directly linked to the development of AF, we studied the effect of this polymorphism on Cx40 expression and distribution in patients without any history of AF and in patients who developed post-operative AF. METHODS AND RESULTS Hundred and eight patients (mean age 67 ± 9 years), without a history of AF or conditions that predispose to AF, were included. During heart surgery, 10 cc blood was collected for DNA genotyping and the right atrial appendage was partly excised. Ten patients (9%) were homozygous for the minor allele (AA, Group 1), 30 (28%) were heterozygous (AG, Group 2), and 68 (63%) were non-carriers (GG, Group 3). Ten age- and sex-matched tissue samples per group were analysed for Cx40 expression by: (i) real-time quantitative polymerase chain reaction (Q-PCR), (ii) western blotting, and (iii) immunohistochemistry on cryosections. Real-time quantitative polymerase chain reaction showed no significant differences of Cx40 mRNA among the groups. Western blot analysis, however, revealed a reduction in Cx40 protein in Groups 1 (-36.4%) and 2 (-39.5%) as compared with Group 3. Immunohistochemistry confirmed this reduction but indicated an unaltered subcellular distribution of the remaining Cx40. Incidence of post-operative AF (28%) was age-dependent but unrelated to the presence of the polymorphism or fibrosis. CONCLUSION Presence of the Cx40 minor allele (-44 G → A) results in a uniform down-regulation of right atrial appendage Cx40 protein which was not significantly related to development of post-operative AF.


CardioRenal Medicine | 2015

Arrhythmogenic Remodeling in Murine Models of Deoxycorticosterone Acetate-Salt-Induced and 5/6-Subtotal Nephrectomy-Salt-Induced Cardiorenal Disease

Magda S.C. Fontes; Diana A. Papazova; Arianne van Koppen; Sanne de Jong; Sanne M. Korte; Lennart G. Bongartz; Tri Q. Nguyen; Marti F.A. Bierhuizen; Teun P. de Boer; Toon A.B. van Veen; Marianne C. Verhaar; Jaap A. Joles; Harold V.M. van Rijen

Background: Renal failure is associated with adverse cardiac remodeling and sudden cardiac death. The mechanism leading to enhanced arrhythmogenicity in the cardiorenal syndrome is unclear. The aim of this study was to characterize electrophysiological and tissue alterations correlated with enhanced arrhythmogenicity in two distinct mouse models of renal failure. Methods: Thirty-week-old 129Sv mice received a high-salt diet and deoxycorticosterone acetate (DOCA) for 8 weeks, followed by an additional period of high-salt diet for 27 weeks (DOCA-salt aged model). Adult CD-1 mice were submitted to 5/6-subtotal nephrectomy (SNx) and treated for 11 weeks with a high-salt diet (SNx-salt adult model). Vulnerability to arrhythmia as well as conduction velocities (CVs) of the hearts were determined ex vivo with epicardial mapping. Subsequently, the hearts were characterized for connexin 43 (Cx43) and fibrosis. Results: DOCA-salt and SNx-salt mice developed renal dysfunction characterized by albuminuria. Heart, lung and kidney weights were increased in DOCA-salt mice. Both DOCA-salt and SNx-salt mice were highly susceptible to ventricular arrhythmias. DOCA-salt mice had a significant decrease in both longitudinal and transversal CV in the left ventricle. Histological analysis revealed a significant reduction in Cx43 expression as well as an increase in interstitial fibrosis in both DOCA-salt and SNx-salt mice. Conclusion: DOCA-salt and SNx-salt treatment induced renal dysfunction, which resulted in structural and electrical cardiac remodeling and enhanced arrhythmogenicity. The reduced Cx43 expression and increased fibrosis levels in these hearts are likely candidates for the formation of the arrhythmogenic substrate.


Molecular Imaging | 2014

Ex Vivo and in Vivo Administration of Fluorescent CNA35 Specifically Marks Cardiac Fibrosis

Sanne de Jong; Lars B. van Middendorp; Robin H.A. Hermans; Jacques M.T. de Bakker; Marti F.A. Bierhuizen; Frits W. Prinzen; Harold V.M. van Rijen; Mario Losen; Marc A. Vos; Marc A. M. J. van Zandvoort

Cardiac fibrosis is a major hallmark of cardiac diseases. For evaluation of cardiac fibrosis, the development of highly specific and preferably noninvasive methods is desired. Our aim was to evaluate CNA35, a protein known to specifically bind to collagen, as a specific marker of cardiac fibrosis. Fluorescently labeled CNA35 was applied ex vivo on tissue sections of fibrotic rat, mouse, and canine myocardium. After quantification of CNA35, sections were examined with picrosirius red (PSR) and compared to CNA35. Furthermore, fluorescently labeled CNA35 was administered in vivo in mice. Hearts were isolated, and CNA35 labeling was examined in tissue sections. Serial sections were histologically examined with PSR. Ex vivo application of CNA35 showed specific binding to collagen and a high correlation with PSR (Pearson r  =  .86 for mice/rats and r  =  .98 for canine; both p < .001). After in vivo administration, CNA35 labeling was observed around individual cardiomyocytes, indicating its ability to penetrate cardiac endothelium. High correlation was observed between CNA35 and PSR (r  =  .91, p < .001). CNA35 specifically binds to cardiac collagen and can cross the endothelial barrier. Therefore, labeled CNA35 is useful to specifically detect collagen both ex vivo and in vivo and potentially can be converted to a noninvasive method to detect cardiac fibrosis.Cardiac fibrosis is a major hallmark of cardiac diseases. For evaluation of cardiac fibrosis, the development of highly specific and preferably noninvasive methods is desired. Our aim was to evaluate CNA35, a protein known to specifically bind to collagen, as a specific marker of cardiac fibrosis. Fluorescently labeled CNA35 was applied ex vivo on tissue sections of fibrotic rat, mouse, and canine myocardium. After quantification of CNA35, sections were examined with picrosirius red (PSR) and compared to CNA35. Furthermore, fluorescently labeled CNA35 was administered in vivo in mice. Hearts were isolated, and CNA35 labeling was examined in tissue sections. Serial sections were histologically examined with PSR. Ex vivo application of CNA35 showed specific binding to collagen and a high correlation with PSR (Pearson r = .86 for mice/rats and r = .98 for canine; both p < .001). After in vivo administration, CNA35 labeling was observed around individual cardiomyocytes, indicating its ability to penetrate cardiac endothelium. High correlation was observed between CNA35 and PSR (r = .91, p < .001). CNA35 specifically binds to cardiac collagen and can cross the endothelial barrier. Therefore, labeled CNA35 is useful to specifically detect collagen both ex vivo and in vivo and potentially can be converted to a noninvasive method to detect cardiac fibrosis.

Collaboration


Dive into the Marti F.A. Bierhuizen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc A. Vos

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Marc A. Vos

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge