Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martial Séveno is active.

Publication


Featured researches published by Martial Séveno.


Plant Journal | 2009

The Arabidopsis IRX10 and IRX10-LIKE glycosyltransferases are critical for glucuronoxylan biosynthesis during secondary cell wall formation

Ai-Min Wu; Christophe Rihouey; Martial Séveno; Emma Hörnblad; Sunil Kumar Singh; Toshiro Matsunaga; Tadashi Ishii; Patrice Lerouge; Alan Marchant

Arabidopsis IRX10 and IRX10-LIKE (IRX10-L) proteins are closely related members of the GT47 glycosyltransferase family. Single gene knock-outs of IRX10 or IRX10-L result in plants with either a weak or no mutant phenotype. However irx10 irx10-L double mutants are severely affected in their development, with a reduced rosette size and infrequent formation of a small infertile inflorescence. Plants homozygous for irx10 and heterozygous for irx10-L have an intermediate phenotype exhibiting a short inflorescence compared with the wild type, and an almost complete loss of fertility. Stem sections of the irx10 homozygous irx10-L heterozygous or irx10 irx10-L double mutants show decreased secondary cell-wall formation. NMR analysis shows that signals derived from the reducing end structure of glucuronoxylan were detected in the irx10 single mutant, and in the irx10 homozygous irx10-L heterozygous combination, but that the degree of polymerization of the xylan backbone was reduced compared with the wild type. Additionally, xylans from irx10 stem tissues have an almost complete loss of the GlcUA side chain, whereas the level of 4-O-Me-GlcUA was similar to that in wild type. Deletion of the predicted signal peptide from the N terminus of IRX10 or IRX10-L results in an inability to rescue the irx10 irx10-L double mutant phenotype. These findings demonstrate that IRX10 and IRX10-L perform a critical function in the synthesis of glucuronoxylan during secondary cell-wall formation, and that this activity is associated with the formation of the xylan backbone structure. This contrasts with the proposed function of the tobacco NpGUT1, which is closely related to the Arabidopsis IRX10 and IRX10-L proteins, in rhamnogalacturonan II biosynthesis.


Plant Physiology | 2002

Rapid structural phenotyping of plant cell wall mutants by enzymatic oligosaccharide fingerprinting.

Olivier Lerouxel; Tze Siang Choo; Martial Séveno; Loı̈c Faye; Patrice Lerouge; Markus Pauly

Various biochemical, chemical, and microspectroscopic methods have been developed throughout the years for the screening and identification of mutants with altered cell wall structure. However, these procedures fail to provide the insight into structural aspects of the cell wall polymers. In this paper, we present various methods for rapidly screening Arabidopsis cell wall mutants. The enzymatic fingerprinting procedures using high-performance anion-exchange-pulsed-amperometric detection liquid chromatography, fluorophore-assisted carbohydrate electrophoresis, and matrix-assisted laser-desorption ionization time of flight (MALDI-TOF) mass spectrometry (MS) were exemplified by the structural analysis of the hemicellulose xyloglucan. All three techniques are able to identify structural alterations of wall xyloglucans in mur1,mur2, and mur3, which in comparison with the wild type have side chain defects in their xyloglucan structure. The quickest analysis was provided by MALDI-TOF MS. Although MALDI-TOF MS per se is not quantitative, it is possible to reproducibly obtain relative abundance information of the various oligosaccharides present in the extract. The lack of absolute quantitation by MALDI-TOF MS was compensated for with a xyloglucan-specific endoglucanase and simple colorimetric assay. In view of the potential for mass screening using MALDI-TOF MS, a PERL-based program was developed to process the spectra obtained from MALDI-TOF MS automatically. Outliers can be identified very rapidly according to a set of defined parameters based on data collected from the wild-type plants. The methods presented here can easily be adopted for the analysis of other wall polysaccharides. MALDI-TOF MS offers a powerful tool to screen and identify cell wall mutants rapidly and efficiently and, more importantly, is able to give initial insights into the structural composition and/or modification that occurs in these mutants.


Plant Biotechnology Journal | 2008

Down-regulated expression of plant-specific glycoepitopes in alfalfa.

Christophe Sourrouille; Estelle Marquet-Blouin; Marc-André D’Aoust; Marie-Christine Kiefer-Meyer; Martial Séveno; Sophie Pagny-Salehabadi; Muriel Bardor; Gaelle Durambur; Patrice Lerouge; Louis Vézina; Véronique Gomord

SUMMARY Compared with other plant expression systems used for pharmaceutical protein production, alfalfa offers the advantage of very homogeneous N-glycosylation. Therefore, this plant was selected for further attempts at glycoengineering. Two main approaches were developed in order to humanize N-glycosylation in alfalfa. The first was a knock-down of two plant-specific N-glycan maturation enzymes, beta1,2-xylosyltransferase and alpha1,3-fucosyltransferases, using sense, antisense and RNA interference strategies. In a second approach, with the ultimate goal of rebuilding the whole human sialylation pathway, human beta1,4-galactosyltransferase was expressed in alfalfa in a native form or in fusion with a targeting domain from N-acetylglucosaminyltransferase I, a glycosyltransferase located in the early Golgi apparatus in Nicotiana tabacum. Both knock-down and knock-in strategies strongly, but not completely, inhibited the biosynthesis of alpha1,3-fucose- and beta1,2-xylose-containing glycoepitopes in transgenic alfalfa. However, recombinant human beta1,4-galactosyltransferase activity in transgenic alfalfa completely prevented the accumulation of the Lewis a glycoepitope on complex N-glycans.


Journal of Experimental Botany | 2008

The synthesis of the rhamnogalacturonan II component 3-deoxy-D-manno-2-octulosonic acid (Kdo) is required for pollen tube growth and elongation

Frédéric Delmas; Martial Séveno; Julian G. B. Northey; Michel Hernould; Patrice Lerouge; Peter McCourt; Christian Chevalier

Despite a very complex structure, the sugar composition of the rhamnogalacturonan II (RG-II) pectic fraction is extremely conserved. Among its constituting monosaccharides is the seldom-observed eight-carbon sugar 3-deoxy-D-manno-octulosonic acid (Kdo), whose phosphorylated precursor is synthesized by Kdo-8-P synthase. As an attempt to alter specifically the RG-II structure in its sugar composition and assess the consequences on the function of RG-II in cell wall and its relationship with growth, Arabidopsis null mutants were sought in the genes encoding Kdo-8-P synthase. Here, the isolation and characterization of one null mutant for the isoform 1 (AtkdsA1-S) and two distinct null mutants for the isoform 2 of Arabidopsis Kdo-8-P synthase (AtkdsA2-V and AtkdsA2-S) are described. Evidence is provided that AtkdsA2 gene expression is preferentially associated with plantlet organs displaying a meristematic activity, and that it accounts for 75% of the mRNAs to be translated into Kdo-8-P synthase. Furthermore, this predominant expression of AtKDSA2 over AtKDSA1 was confirmed by quantification of the cytosolic Kdo content in the mutants, in a variety of ecotypes. The inability to identify a double knockout mutant originated from pollen abortions, due to the inability of haploid pollen of the AtkdsA1- AtkdsA2- genotype to form an elongated pollen tube properly and perform fertilization.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Phylogenetic character mapping of proteomic diversity shows high correlation with subspecific phylogenetic diversity in Trypanosoma cruzi.

Jenny Telleria; David G. Biron; Jean-Paul Brizard; Edith Demettre; Martial Séveno; Christian Barnabé; Francisco J. Ayala; Michel Tibayrenc

We performed a phylogenetic character mapping on 26 stocks of Trypanosoma cruzi, the parasite responsible for Chagas disease, and 2 stocks of the sister taxon T. cruzi marinkellei to test for possible associations between T. cruzi–subspecific phylogenetic diversity and levels of protein expression, as examined by proteomic analysis and mass spectrometry. We observed a high level of correlation (P < 10−4) between genetic distance, as established by multilocus enzyme electrophoresis, and proteomic dissimilarities estimated by proteomic Euclidian distances. Several proteins were found to be specifically associated to T. cruzi phylogenetic subdivisions (discrete typing units). This study explores the previously uncharacterized links between infraspecific phylogenetic diversity and gene expression in a human pathogen. It opens the way to searching for new vaccine and drug targets and for identification of specific biomarkers at the subspecific level of pathogens.


Journal of Proteome Research | 2008

Enhanced detection of CNS cell secretome in plasma protein-depleted cerebrospinal fluid.

Eric Thouvenot; Serge Urbach; Christelle Dantec; Joël Poncet; Martial Séveno; Edith Demettre; Patrick Jouin; Jacques Touchon; Joël Bockaert; Philippe Marin

Human cerebrospinal fluid (CSF) proteome is actively investigated to identify relevant biomarkers and therapeutic targets for neurological disorders. Approximately 80% of CSF proteome originate from plasma, yielding a high dynamic range in CSF protein concentration and precluding identification of potential biomarkers originating from CNS cells. Here, we have adapted the most complete multiaffinity depletion method available to remove 20 abundant plasma proteins from a CSF pool originating from patients with various cognitive disorders. We identified 622 unique CSF proteins in immunodepleted plus retained fractions versus 299 in native CSF, including 22 proteins hitherto not identified in CSF. Parallel analysis of neuronal secretome identified 34 major proteins secreted by cultured cortical neurons (cell adhesion molecules, proteins involved in neurite outgrowth and axonal guidance, modulators of synaptic transmission, proteases and protease inhibitors) of which 76% were detected with a high confidence in immunodepleted CSF versus 50% in native CSF. Moreover, a majority of proteins previously identified as secretory products of choroid plexus cells or astrocytes were detected in immunodepleted CSF. Hence, removal of 20 major plasma proteins from CSF improves detection of brain cell-derived proteins in CSF and should facilitate identification of relevant biomarkers in CSF proteome profiling analyses.


Nature Chemical Biology | 2014

Cdk5 induces constitutive activation of 5-HT6 receptors to promote neurite growth.

Fanny Duhr; Paul Déléris; Fabrice Raynaud; Martial Séveno; Séverine Morisset-Lopez; Clotilde Mannoury la Cour; Mark J. Millan; Joël Bockaert; Philippe Marin; Séverine Chaumont-Dubel

The serotonin6 receptor (5-HT6R) is a promising target for treating cognitive deficits of schizophrenia often linked to alterations of neuronal development. This receptor controls neurodevelopmental processes, but the signaling mechanisms involved remain poorly understood. Using a proteomic strategy, we show that 5-HT6Rs constitutively interact with cyclin-dependent kinase 5 (Cdk5). Expression of 5-HT6Rs in NG108-15 cells induced neurite growth and expression of voltage-gated Ca(2+) channels, two hallmarks of neuronal differentiation. 5-HT6R-elicited neurite growth was agonist independent and prevented by the 5-HT6R antagonist SB258585, which behaved as an inverse agonist. Moreover, it required receptor phosphorylation at Ser350 by Cdk5 and Cdc42 activity. Supporting a role of native 5-HT6Rs in neuronal differentiation, neurite growth of primary neurons was reduced by SB258585, by silencing 5-HT6R expression or by mutating Ser350 into alanine. These results reveal a functional interplay between Cdk5 and a G protein-coupled receptor to control neuronal differentiation.


Plant Physiology | 2003

The Gene Expression and Enzyme Activity of Plant 3-Deoxy-D-Manno-2-Octulosonic Acid-8-Phosphate Synthase Are Preferentially Associated with Cell Division in a Cell Cycle-Dependent Manner

Frédéric Delmas; Johann Petit; Jérôme Joubès; Martial Séveno; Thomas Paccalet; Michel Hernould; Patrice Lerouge; Armand Mouras; Christian Chevalier

3-Deoxy-d-manno-2-octulosonic acid-8-phosphate (Kdo-8-P) synthase catalyzes the condensation of phosphoenolpyruvate with d-arabinose-5-phosphate to yield Kdo-8-P. Kdo-8-P is the phosphorylated precursor of Kdo, a rare sugar only found in the rhamnogalacturonan II pectic fraction of the primary cell walls of higher plants and of cell wall polysaccharides of some green algae. A cDNA named LekdsA (accession no. AJ294902) encoding tomato (Lycopersicon esculentum) Kdo-8-P synthase has been isolated. The recombinant protein rescued a kdsA thermosensitive mutant of Salmonella typhimurium impaired in the synthesis of a functional Kdo-8-P synthase. Using site-directed mutagenesis of LekdsA cDNA, the tomato Kdo-8-P synthase was shown to possess the same essential amino acids that form the active sites in the bacterial enzymes. The tomato kdsA gene expression and the relevant Kdo-8-P synthase activity were preferentially associated to dividing cells, in the course of the early development of tomato fruit and in meristematic tissues. Furthermore, the transcription of the kdsA gene was found to oscillate during the cell cycle in tobacco (Nicotiana tabacum) Bright-Yellow 2 synchronized cells with a maximum during mitosis.


Analytical Biochemistry | 2008

Plant N-glycan profiling of minute amounts of material.

Martial Séveno; Gleysin Cabrera; Ada Triguero; Carole Burel; Jérôme Leprince; Christophe Rihouey; Louis-Philippe Vezina; Marc-André D’Aoust; Pauline M. Rudd; Louise Royle; Raymond A. Dwek; David J. Harvey; Patrice Lerouge; José A. Cremata; Muriel Bardor

Development of convenient strategies for identification of plant N-glycan profiles has been driven by the emergence of plants as an expression system for therapeutic proteins. In this article, we reinvestigated qualitative and quantitative aspects of plant N-glycan profiling. The extraction of plant proteins through a phenol/ammonium acetate procedure followed by deglycosylation with peptide N-glycosidase A (PNGase A) and coupling to 2-aminobenzamide provides an oligosaccharide preparation containing reduced amounts of contaminants from plant cell wall polysaccharides. Such a preparation was also suitable for accurate qualitative and quantitative evaluation of the N-glycan content by mass spectrometry. Combining these approaches allows the profiling to be carried out from as low as 500 mg of fresh leaf material. We also demonstrated that collision-induced dissociation (CID) mass spectrometry in negative mode of N-glycans harboring alpha(1,3)- or alpha(1,6)-fucose residue on the proximal GlcNAc leads to specific fragmentation patterns, thereby allowing the discrimination of plant N-glycans from those arising from mammalian contamination.


Glycobiology | 2010

Characterization of a putative 3-deoxy-d-manno-2-octulosonic acid (Kdo) transferase gene from Arabidopsis thaliana

Martial Séveno; Emilie Séveno-Carpentier; Aline Voxeur; Laurence Menu-Bouaouiche; Christophe Rihouey; Frédéric Delmas; Christian Chevalier; Azeddine Driouich; Patrice Lerouge

The structures of the pectic polysaccharide rhamnogalacturonan II (RG-II) pectin constituent are remarkably evolutionary conserved in all plant species. At least 12 different glycosyl residues are present in RG-II. Among them is the seldom eight-carbon sugar 3-deoxy-d-manno-octulosonic acid (Kdo) whose biosynthetic pathway has been shown to be conserved between plants and Gram-negative bacteria. Kdo is formed in the cytosol by the condensation of phosphoenol pyruvate with d-arabinose-5-P and then activated by coupling to cytidine monophosphate (CMP) prior to its incorporation in the Golgi apparatus by a Kdo transferase (KDTA) into the nascent polysaccharide RG-II. To gain new insight into RG-II biosynthesis and function, we isolated and characterized null mutants for the unique putative KDTA (AtKDTA) encoded in the Arabidopsis genome. We provide evidence that, in contrast to mutants affecting the RG-II biosynthesis, the extinction of the AtKDTA gene expression does not result in any developmental phenotype in the AtkdtA plants. Furthermore, the structure of RG-II from the null mutants was not altered and contained wild-type amount of Rha-alpha(1-5)Kdo side chain. The cellular localization of AtKDTA was investigated by using laser scanning confocal imaging of the protein fused to green fluorescent protein. In agreement with its cellular prediction, the fusion protein was demonstrated to be targeted to the mitochondria. These data, together with data deduced from sequence analyses of higher plant genomes, suggest that AtKDTA encodes a putative KDTA involved in the synthesis of a mitochondrial not yet identified lipid A-like molecule rather than in the synthesis of the cell wall RG-II.

Collaboration


Dive into the Martial Séveno's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edith Demettre

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

Philippe Marin

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

Alexandre Andersen

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Bernard Fernandez

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Christian Chevalier

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nathalie Vachiery

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Philippe Holzmuller

Institut de recherche pour le développement

View shared research outputs
Researchain Logo
Decentralizing Knowledge